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Abstract

Models defined by a set of conditional independence restrictions
play an important role in statistical theory and applications, espe-
cially, but not only, in graphical modeling. In this paper we iden-
tify a subclass of these consisting of hierarchical marginal log-linear
models, as defined by Bergsma and Rudas (2002a). Such models are
smooth, which implies the applicability of standard asymptotic theory
and simplifies interpretation. Furthermore, we give a marginal log-
linear parameterization and a minimal specification of the models in
the subclass, which implies the applicability of standard methods to
compute maximum likelihood estimates and simplifies the calculation
of the degrees of freedom of chi-squared statistics to test goodness-of-
fit. The utility of the results is illustrated by applying them to certain
block-recursive Markov models associated with chain graphs.

Key words: Chain graph; Conditional independence; Graphical
model; Marginal model; Smoothness.
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1 Introduction

Conditional independence models have received considerable attention re-
cently, see, e.g., Studeny (2005). Such models are defined by one or more
conditional independence restrictions on a set of random variables. Graphi-
cal models are perhaps the most important examples, see Cox and Wermuth
(1996), Lauritzen (1996) and the references in Section 3.

Conditional independence models may show unexpected behaviour. For
example, for random variables A, B, and C, the intersection of A⊥⊥C and
A⊥⊥B | C can be verified to be equivalent to A⊥⊥BC, where BC means the
joint distribution of B and C. But if C is dichotomous, the intersection of
A⊥⊥B and A⊥⊥B | C is equivalent to the union of A⊥⊥BC and B⊥⊥AC, and
has singularities, see Bergsma and Rudas (2002a).

This paper considers strictly positive distributions on contingency tables
and identifies a subclass of conditional independence models which belong
to the class of marginal log-linear models developed by Bergsma and Rudas
(2002a). Such models are smooth, a characteristic that aids their interpre-
tation, and guarantees the applicability of standard asymptotic theory. The
intersection of A⊥⊥B and A⊥⊥B | C is singular at any distribution satisfy-
ing mutual independence of the three variables. Our main result, given in
Section 2, is a combinatorial condition on the sets of variables involved in
the conditional independence restrictions, that guarantees that the model is
a hierarchical marginal log-linear model and hence smooth. Furthermore, a
minimal specification of such models is obtained, as well as a marginal log-
linear parameterization. The minimal specification is necessary to apply the
fitting algorithms described by Lang and Agresti (1994), Bergsma (1997),
Bergsma, Croon, and Hagenaars (2009), and allows for easy computation of
the degrees of freedom for the model.

In Section 3, we use the main result to prove that block-recursive Markov
models associated with chain graphs, called Type IV models by Drton
(2009), see also Andersson, Madigan, and Perlman (2001), are smooth. This
result is not new but our approach gives an interpretable parameterization
and implies the number of degrees of freedom.

2 Conditional independence models as marginal
log-linear models

Let V be a set of categorical variables and let P denote the set of strictly
positive joint probability distributions for V. Further, for i = 1, . . . , k, let
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Ai 6= ∅, Bi 6= ∅ and Ci be pairwise disjoint subsets of the variables. Then

Qk = ∩k
i=1 {P ∈ P : Ai⊥⊥Bi | Ci (P )} (1)

is a conditional independence model which consists of the probability dis-
tributions P for which the required conditional independencies Ai⊥⊥Bi | Ci,
i = 1, . . . , k, hold. In this section properties of Qk are studied using
the marginal log-linear model framework of Bergsma and Rudas (2002a).
Marginal log-linear models impose restrictions on log-linear parameters de-
fined in marginal distributions.

The joint sample space of variables V is called a contingency table and
that of a subset of V, say M, is a marginal of the contingency table. Let
M1, . . . ,Mm be a so-called complete hierarchical order of subsets of V,
defined by the property that Mi ⊆ Mj implies i < j and Mm = V. For
every subset E of V, M(E) denotes the first marginal in the hierarchical
order that contains E . Consider now for all subsets E the corresponding
log-linear parameter (Bishop, Fienberg, and Holland, 1975 or Agresti, 2002)
within the marginalM(E). The values of the components of this parameter
are associated with different combinations of the indices of the variables in
E . Denote a choice of maximal linearly independent components by λM(E)

E .
These are the hierarchical marginal log-linear parameters. The assumption
that Λ = {λM(E)

E : E ⊆ V} is in a linear subspace of a |Λ|-dimensional
Euclidean space is a hierarchical marginal log-linear model. Marginal log-
linear parameters and models were systematically studied by Bergsma and
Rudas (2002a), see also Bergsma and Rudas (2002b). In general, marginal
log-linear models do not have a unique parameterization, since depending on
the choice of the marginals, different parameterizations of the same model
are obtained.

A model is a set of probability distributions and an important property
of a model is smoothness. A model is smooth if it admits a smooth parame-
terization. A function of the probability distributions in the model is called
a parameter and it is a parameterization if it is invertible. A parameteri-
zation is smooth, if it is a twice continuously differentiable homeomorphism
onto an open set in Euclidean space. Bergsma and Rudas (2002a) proved
that, for a complete hierarchical order M1, . . . ,Mm,

{λM(E)
E : E ⊆ V }

is a smooth parameterization of the joint distribution of V.
For models defined by restrictions on a parameterization, the specifica-

tion is called minimal if no restriction can be removed without changing the
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model. This was first studied in the context of marginal log-linear models
by Lang and Agresti (1994).

To apply this framework to Qk, define, with IP(.) denoting the power
set,

IDi = IDi(Ai,Bi, Ci) = IP(Ai∪Bi∪Ci)\(IP(Ai∪Ci)∪IP(Bi∪Ci)), i = 1, . . . , k.

Theorem 1 For the model defined by (1), suppose there exists a sequence
M1, . . . ,Mm of subsets of V in complete hierarchical order that satisfies

Ci ⊆M(E) ⊆ Ai ∪ Bi ∪ Ci, i = 1, . . . , k, E ∈ IDi . (2)

Then the following statements hold true:

S1: A distribution Q is in Qk if and only if

λ
M(E)
E (Q) = 0, E ∈ ∪k

i=1IDi. (3)

S2: The model Qk is hierarchical marginal log-linear and is hence smooth.

S3: The model Qk is parameterized by

{λM(E)
E : E ∈ IP(V) \ ∪k

i=1IDi} (4)

and this is a smooth parameterization.

S4: The specification of Qk given in (3) is minimal.

S5: The number of degrees of freedom associated with Qk is∑
E ∈∪k

i=1IDi

∏
V ∈E

(CV − 1) ,

where CV is the number of categories of variable V .

The proof of Theorem 1, to be given in the Appendix, uses Lemma 1
which describes well-known properties of conditional independence models.

Lemma 1 Let P ∈ P and let A, B and C be pairwise disjoint subsets of V.
Then, the following four properties are equivalent:

L1: A⊥⊥B | C (P );

L2: P (ABC) = P (AC)P (BC)
P (C) ;
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L3: λA∪B∪CD (P ) = 0, D ∈ ID(A,B, C);

L4: P (ABC) = t(AC)u(BC) for some functions t and u.

The following examples illustrate applications and limitations of Theo-
rem 1.

Example 1 For the intersection of A⊥⊥BC | DE, F⊥⊥BD | C, AF⊥⊥BE |
DC, ID2, for example, is {FB,FD,FBD,FBC,FDC,FBDC}. Then, with
(M1,M2,M3) = (ABCDE,BCDF,ABCDEF ), condition (2) is satisfied,
so the model is hierarchical marginal log-linear and smooth. A minimal
specification of the model is:

λABCDE
E = 0, E ∈ IE1, (5)
λABCDE
E = 0, E ∈ IE2, (6)
λBCDF
E = 0, E ∈ IE3, (7)

λABCDEF
E = 0, E ∈ IE4, (8)

with

IE1 = {AB,AC,ABC,ABD,ACD,ABCD,ABE,ACE,ABCE,ABDE,
ACDE,ABCDE},
IE2 = {AE,ADE},

IE3 = {BF,DF,BDF,BCF,CDF,BCDF},
IE4 = {EF,ABF,AEF,BEF,ABEF,DEF,ABDF,

ADEF,BDEF,ABDEF,CEF,ABCF,ACEF,BCEF,
ABCEF,CDEF,ABCDF,ACDEF,BCDEF,ABCDEF}.

By Lemma 1, (5) and (7) are equivalent to the first two conditional in-
dependencies defining the model. One might think that, in addition to
(8), zero restrictions are needed for the log-linear parameters in ABCDEF
pertaining to the subsets E ∈ ID3 \ IE4, as suggested by Lemma 1. But
ID3 \ IE4 ⊂ IE1 ∪ IE2 ∪ IE3, and Theorem 1 implies that these log-linear
parameters need not be set to zero in ABCDEF . Thus, application of
Theorem 1 is necessary to achieve minimal specification of the model. By
calculating the number of linearly independent restrictions for each parame-
ter in a minimal specification of the model, the number of degrees of freedom
may be determined. 2
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Example 2 The model defined as the intersection of A⊥⊥B | D, A⊥⊥C | B,
A⊥⊥D | C is not identified as a smooth model by Theorem 1, although from
the inspection of the Jacobian of its parameterization we suspect that it is,
in fact, smooth. 2

3 Applications to graphical models

Graphical models associated with directed acyclic graphs (Lauritzen, 1996)
are marginal log-linear models in the sense of Bergsma and Rudas (2002a),
see Rudas, Bergsma, and Németh (2006). Here the Markov property is

Vi⊥⊥nd(Vi) | pa(Vi), (9)

for every variable Vi, where nd(Vi) denotes the nondescendants and pa(Vi)
denotes the parents of Vi. The marginal log-linear parameterization of such
models given in Rudas et al. (2006) is based on a well-numbering of the
variables (Lauritzen, Dawid, Larsen, and Leimer, 1990), such that (9) is
equivalent to

Vi⊥⊥pre(Vi) \ pa(Vi) | pa(Vi), (10)

where pre(Vi) is the set of variables preceding Vi in the well-numbering. The
parameterization proposed by Rudas et al. (2006) is based on the marginals
{Vi} ∪ pre(Vi) for which (2) of Theorem 1 holds.

Statistical models associated with chain graphs have been considered,
among others, by Lauritzen and Wermuth (1989), Frydenberg (1990), Cox
and Wermuth (1996), Andersson et al. (2001), Richardson (2003), Wermuth
and Cox (2004), Drton (2009).

For a component K ⊆ V of a chain graph, ND(K) is the set of nonde-
scendants of K, i.e., the union of those components, except K, for which no
semi-directed path leads from any node in K to any node in these compo-
nents. PA(K) is the set of parents of K, i.e., the union of those components
from which an arrow points to a node in K. The set of neighbours of X ⊆ K,
nb(X ), is the set of nodes in K that are connected to a node in X and pa(X )
is the set of nodes from which an arrow points to any node in X .

Chain graph models are defined by combinations of some of the following
properties.
P1: For all components K, K⊥⊥{ND(K) \ PA(K)} | PA(K),
P2a: For all K and X ⊆ K, X⊥⊥{K \ X \ nb(X )} | {PA(K) ∪ nb(X )} ,
P2b: For all K and X ⊆ K, X⊥⊥{K \ X \ nb(X )} | PA(K),
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Figure 1: Chain graph whose Andersson–Madigan–Perlman interpretation
is a smooth model (see Example 3)

P3a: For all K and X ⊆ K, X⊥⊥{PA(K) \ pa(X )} | {pa(X ) ∪ nb(X )} ,
P3b: For all K and X ⊆ K, X⊥⊥{PA(K) \ pa(X )} | pa(X ).

The Type I Markov property (P1, P2a, P3a) is also called the Lauritzen–
Wermuth–Frydenberg block-recursive Markov property, see Lauritzen and
Wermuth (1989) and Frydenberg (1990), and the Type II Markov prop-
erty (P1, P2a, P3b) is also called the Andersson–Madigan–Perlman block-
recursive Markov property, see Andersson et al. (2001).

Smoothness of Type I models is implied by the results of Frydenberg
(1990) and is also easily obtained applying Theorem 1.

The following example illustrates that Theorem 1 may be used to es-
tablish smoothness of chain graph models belonging to model classes which
also contain nonsmooth models.

Example 3. The graph in Figure 1 with Type II interpretation is a
smooth model and may be parameterized using the marginals AB, ABC,
ABD, CDE, CDF , CDG, CDEG, CDFG, CDEFG, ABCDEFG. Type
II models are not smooth in general, see Drton (2009), but in this case
Theorem 1 implies smoothness immediately. 2

Drton (2009) showed that Type IV models (P1, P2b, P3b) are smooth
and gave a parameterization. Marchetti and Lupparelli (2008) illustrated
through examples that these models are marginal log-linear. We now apply
the general method in Theorem 1 to prove smoothness based on an inter-
pretable parameterization, also implying the number of degrees of freedom
associated with a Type IV model.

Theorem 2 Assuming strictly positive discrete distributions, a Type IV
model for a chain graph is a hierarchical marginal log-linear model, and
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is, therefore, smooth. Suppose the chain graph has components K1, . . . ,KT ,
that are well-numbered. The parameterization is based on the marginals

{PA(Kt) ∪ X : X ⊆ Kt}∗, K1 ∪ . . . ∪ Kt, t = 1, . . . , T, (11)

where { }∗ denotes a hierarchical ordering of the elements of the set. The
parameters set to zero to define the model are those associated with the effects
in

{ID(X ,Kt \ X \ nb(X ),PA(Kt)) : X ⊆ Kt}∪
{ID(X ,PA(Kt) \ pa(X ), pa(X )) : X ⊆ Kt}∪

ID(Kt, (Kt) \ PA(Kt),PA(Kt)),
(12)

for all components Kt, where (Kt) is the set of components that precede Kt.

Proof For each component Kt, the conditioning set in P2b is PA(Kt) and in
P3b it is pa(X ) ⊆ PA(Kt), thus for all conditional independencies implied
by P2b or P3b, if written in the form of Ai⊥⊥Bi | Ci, Ci ⊆ PA(Kt). Further,
for these conditional independencies, Ai ∪ Bi ∪ Ci = PA(Kt ∪ X ) for some
X ⊆ Kt. Thus, for

{PA(Kt) ∪ X : X ⊆ Kt}∗ (13)

condition (2) holds and Theorem 1 applies. Therefore, a hierarchical marginal
log-linear parameterization of the distributions with Properties P2b and P3b
for any Kt is obtained. In addition, P1 has to be imposed.

The proof of equivalence between the local directed Markov property
(9) and the local well-numbering Markov property (10) in Lauritzen et al.
(1990) also applies to components of chain graphs, so it is also true that for
a distribution on the chain graph, P1 holds if and only if the following P4
does.

P4: For all Kt, Kt⊥⊥(Kt) \ PA(Kt) | PA(Kt).
Because (Kt) = K1∪. . .∪Kt−1, P4 may be parameterized using the marginal

K1 ∪ . . . ∪ Kt. (14)

Adding (14) after the marginals in (13) is hierarchical and the conditional
independency in P4 is parameterized by setting to zero marginal log-linear
parameters that are associated with effects appearing for the first time in
(14), see Lemma 1.

Hence a hierarchical marginal log-linear parameterization of the Type IV
block-recursive model may be obtained by using the marginals in (13) and
(14), yielding (11). Theorem 1 implies that in the parameterization based
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on the marginals in (11), the effects associated with (12) are zero and the
remaining parameters parameterize the distributions in the model. 2

As implied by S3 of Theorem 1, the parameters not set to zero in (12)
parameterize the model. These parameters are associated with the same
effects as those found by Marchetti and Lupparelli (2008) to have nonzero
parameters in the examples they investigated, although the marginals used
for the parameterization are different.
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Appendix

Proof of Theorem 1 First we prove that S1 is true. To see that Q ∈ Qk

implies (3), let i ∈ {1, . . . , k} and E ∈ IDi be arbitrary. Because of (2),

[Ai ∩M(E)] ∪ [Bi ∩M(E)] ∪ Ci

= [Ai ∩M(E)] ∪ [Bi ∩M(E)] ∪ [Ci ∩M(E)]

= [Ai ∪ Bi ∪ Ci] ∩M(E) =M(E).

Hence if Q ∈ Qk, then Ai ∩ M(E)⊥⊥Bi ∩ M(E) | Ci (Q), and because
E ∈ ID(Ai ∩M(E),Bi ∩M(E), Ci), L3 implies (3).

To see that (3) implies Q ∈ Qk define, for j ≤ m, Ij = {i ≤ k | Ci ⊆Mj

⊆ Ai ∪ Bi ∪ Ci}. The set Ij contains the indices in the specification of Qk

which may imply a conditional independence restriction for the marginal
Mj . Indeed, with Aij = Ai ∩Mj and Bij = Bi ∩Mj , where either of these
sets may be empty,

Mj = Aij ∪ Bij ∪ Ci i ∈ Ij

and the conditional independencies for Mj are

Aij⊥⊥Bij | Ci (Q) i ∈ Ij . (15)
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Since Ai ∪ Bi ∪ Ci ∈ IDi, by (2) we must have that for all i ≤ k there is a
ji ≤ m such that Mji = Ai ∪ Bi ∪ Ci. But then Aiji = Ai and Biji = Bi, so
choosing j = ji shows that if (15) holds for all j ≤ m, then Q ∈ Qk, because
Mm = V. To complete the proof of S1, it is therefore sufficient to show that
(3) implies that (15) holds for all j ≤ m.

Let Qj denote the restriction of Q to Mj . It is sufficient to show (15)
for Qj , which we do by applying two nested induction arguments. Because
of (3) and L3, (15) is true for Q1. Let the outer induction assumption be
that (15) is true for Qj for all j < l, for some l ≤ m and now we prove (15)
for all j ≤ l.

Define a strictly positive probability distribution Pl on Ml, such that if
E ⊆ Ml \ (∪j<lMj), then λMl

E (Pl) = λMl
E (Ql) and that Ail⊥⊥Bil | Ci (Pl)

holds for all i ∈ Il. These two requirements are compatible, because of (3)
and L3.

Now characterize Ql by a mixed parameterization in the exponential
family sense, see Barndorff-Nielsen (1978), Rudas (1998). Then Ql may be
obtained from Pl by replacing the marginal distributions of Pl on all Mj ∩
Ml, j < l with Qj(Mj∩Ml), without changing its log-linear parameters for
the effects E ⊆ Ml \ (∪j<lMj). To achieve this, the iterative proportional
fitting procedure may be applied, starting with P 0 = Pl, for which (15)
holds and it factorizes as in L4 according to (15) for j = l. In every step,
the IPFP adjusts one marginal. The adjustment in step h, for h = 1, . . . , is

P h(Ml) = P h−1(Ml)
Qj(Mj ∩Ml)
P h−1(Mj ∩Ml)

, (16)

where j = h(mod (l − 1)). Let the inner induction assumption be that
P h−1 factorizes as in L4 according to (15) for j = l, which is true for
h = 1. Then P h factorizes as well, because all its factors in (16) do so.
Indeed, if i ∈ Ij , the outer induction assumption is that Qj factorizes and
so does Qj(Mj ∩Ml). If i ∈ Il \ Ij , then either Mj ∩Ml /∈ IDi and the
factorization is trivial, or Ci * Mj (otherwise i ∈ Ij would follow), and
although Mj ⊇ Mj ∩ Ml, Mj cannot be M(Mj ∩ Ml) because of (2),
thus M(Mj ∩Ml) = Mj′ for some j′ < j. Qj′ factorizes as required by
the outer induction assumption, and Mj ∩Ml ⊆Mj′ , so Qj(Mj ∩Ml) =
Qj′(Mj ∩Ml) also factorizes.

As implied by Csiszár (1975), the procedure converges to Ql and by
positivity also the limit factorizes as in L4 according to (15) for j = l, which
completes the inner induction. Because of the outer induction assumption,
for all j < l, (15) already holds for Qj , thus the outer induction step and
with it the proof of S1 is completed.
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To see the rest of the Theorem, note that, since M1, . . . ,Mm is hi-
erarchical and complete, Theorem 2 of Bergsma and Rudas (2002a) can
be applied with, using the notation of that paper, P and λ̃P defined as
P = {(E ,M(E)) | E ⊆ V} and λ̃P = {λM(E)

E | E ⊆ V}, implying that the
latter is a smooth parameterization of the distributions on the contingency
table, implying S2, S3, S4. Theorem 5 in Bergsma and Rudas (2002a) can
now be applied to obtain S5. 2
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