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Abstract

When data in the form of a 2× 2 treatment by response table are avail-
able, the better out of the two treatments is often selected using the odds
ratio (cross product ratio). Such decisions do not depend on the allocation
of the observations in the different treatment categories and may exhibit a
counterintuitive reversal property, called Simpson’s paradox. In cases when
those receiving different treatments are potentially different, as in observa-
tional studies or in designed experiments with dropout or noncompliance,
decisions taking into account the difference in observed allocations may be
useful. Using an approach that postulates certain desirable properties of de-
cision functions and derives further characteristics from these, a new decision
procedure based on the cross sum ratio is investigated. This procedure is not
only sensitive to allocation but also turns out to be the only selection proce-
dure that avoids Simpson’s paradox. In addition to these logical advantages,
the probability of wrong decision when using the cross sum ratio tends to
be smaller than when using the cross product ratio. The application of the
new decision procedure is illustrated by the re-analysis of data sets, some
of which exhibit Simpson’s paradox when analyzed using the cross product
ratio. Finally, generalizations of the decision procedures to 2 × J decision
tables are considered.

Key words: Cross product ratio, Cross sum ratio, Decision functions,
Simpson’s paradox.

1. Introduction

This paper deals with the comparison of two treatments, Tr1 and Tr2,
based on data in the form of a 2× 2 contingency table or decision table T :
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T =
Response Positive Negative

Tr1 a b

Tr2 c d

Such data arise in a variety of contexts as the result of different data collec-
tion procedures, including designed experiments (clinical trials), case-control
studies (Dawson & Trapp, 2004) and observational studies (Rosenbaum,
1995). The goal of the analysis is to evaluate the treatments relative to each
other, either in the context of causal decision theory or that of evidential de-
cision theory (see, e.g., Meek & Glymour (1994), Curley & Browne (2001)).
From a practical perspective, several diagnostic (Goldstein & Simel, 2005)
and treatment decisions (Davies et al, 1998) in medicine and also other pol-
icy decisions (see, e.g., Wainer & Brown (2004)) are based on the analysis
of data as in T .

The comparison is often based on the value of the odds ratio (Rudas,
1998) or cross product ratio (cpr)

a/b

c/d
=
ad

bc

and on the value of the relative risk (rr), or risk ratio that, depending on
the context, is also called success rate (see, e.g., Dawson & Trapp (2004)),

a
a+b

c
c+d

and deems Tr1 better than Tr2 if the cpr or the rr is greater than 1.
A formal discussion of treatment comparisons may be given by using

decision functions. For all tables T , these functions are defined to yield 1 or
-1 or 0, telling which treatment is better (the first one, the second one, none
of them). For example, a decision function based on the cpr may defined as

CPR = sgn(log(
ad

bc
)),

where sgn is the sign function. Two such decision functions γ1 ans γ2 are
considered equal, if for all tables T , γ1(T ) = γ2(T ). Therefore, the decision
functions are, in fact, equivalence classes and the same decision functions
may be represented by different functional forms. This is similar to consid-
ering the functions f(x) = x and g(x) = (x3)1/3 equal. For example, it is
easy to see that the CPR is the same decision function as sgn(log(rr)). In
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Section 2, six basic properties of such decision functions are postulated and
all possible decision functions with these properties are investigated.

The developments in this paper are motivated by two properties of de-
cisions based on the CPR, which may be seen as problematic, at least in
certain situations. The first such property is illustrated by the fact that it
selects the same treatment (namely Tr1) based on the following tables:

T1 =
Response Positive Negative

Tr1 450 100
Tr2 280 70

T2 =
Response Positive Negative

Tr1 90 20
Tr2 600 150

The two sets of data are identical with respect to the conditional distribution
of response, given treatment, but they are different with respect to the
treatment marginals, that is, with respect to allocation. In other words,
cpr and CPR are invariant against changes in allocation, if these changes
leave the conditional distribution of response, given treatment, unaffected
(see (4)).

Whether arriving at the same conclusion from these two sets of data is
appropriate or not, depends on whether the difference in allocation is the
result of the action of the experimenter, as in a designed experiment, and
in this case reaching the same conclusion seems justified based on an ex-
changeability argument (Lindley & Novick, 1981), or rather is the result of
some procedure outside of the control of the experimenter, as in an obser-
vational study, and in this case it is not obvious whether reaching the same
conclusion is justified or not. In the former case, allocation into treatment
categories is noninformative and in the latter case it is, at least potentially,
informative. This difference needs to be taken into account when choosing
the decision function. Note, that even in the case of an originally noninfor-
mative allocation, as in a clinical trial, different dropout rates (Diggle et al,
2002) and different compliance rates (Diggle et al, 2002; Schechtman, 2000)
often make the observed treatment marginal informative.

The second characteristic of decisions based on the CPR is that the
so-called Simpson’s paradox (Blyth, 1972; Lindley & Novick, 1981; Wagner,
1982; Meek & Glymour, 1994; Aldrich, 1995; Pearl, 2000) may occur. Simp-
son’s paradox is said to have occurred, when one treatment is better in the
data than the other one, but if the data are split according to another vari-
able, the other treatment appears better in both subgroups (briefly referred
to as reversal):

CPR(T1) = CPR(T2) 6= CPR(T1 + T2),
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where the sum of two tables is the table with the sum of the individual
frequencies.

It is proved in Section 2 that the two issues related to the use of the CPR
to select a treatment are, in fact, related. Simpson’s paradox may occur
with any decision function that is invariant against changes in allocation
(including also the risk ratio).

The main formal result of the paper is that there exists only one consis-
tent (see (3)) decision function, that is such that Simpson’s paradox cannot
occur with it, and this is

CSR = sgn(log(
a+ d

b+ c
)).

This decision function is based on the cross sum ratio

csr =
a+ d

b+ c
.

The main message of the paper is that when allocation is potentially
informative, a decision function, like the CSR that is sensitive to allocation
may be preferable to the CPR. Obviously, there are data sets where the
CPR and the CSR lead to different conclusions. For example, with the
above data, CPR(T2) = 1 and CSR(T2) = −1, a conclusion that may
appear surprising to one’s intuition – an intuition that has been educated
using the cpr. The decision based on the CSR reflects the fact that in
T2, Tr2 was beneficial to 450 subjects in excess of those to whom it was
detrimental, while the same quantity is only 70 for Tr1, because the CSR
depends on how a − b compares to c − d. In fact, for gi = (gi1, gi2), and
δ(gi) = gi1 − gi2,

sgn(δ(g1)− δ(g2)) = CSR if g1 = (a, b) and g2 = (c, d) (1)

and

sgn(δ(g1)− δ(g2)) = CPR if g1 = (
a

a+ b+
,

b

a+ b
) and g2 = (

c

c+ d
,

d

c+ d
).

(2)
That is, the CSR and the CPR are the same function applied to the ob-
served conditional frequency distributions or to the observed conditional
probability distributions in the decision table. The difference between the
two decisions is exactly whether or not the a + b and c + d marginal dis-
tributions, that is the allocations into treatment categories, are taken into
account.
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It has to be emphasized again, that the CSR is investigated here as a
decision function and it is a simple representative of an equivalence class of
decision functions. Therefore, the csr is not considered a measure of effect
strength and issues related to the cpr in that context (see, e.g., Craemer
(2004), Rudas & Bergsma (2004)) need not be considered.

Section 3 deals with sampling properties of the CSR, in particular the
probability of wrong decision based on a sample. In this comparison, the
CSR presents itself as a more reliable decision function than the CPR.
Further, confidence intervals for the true value of the CSR are proposed.

Section 4 discusses real examples when CPR 6= CSR, including the
Berkeley admissions data (Bickel et al, 1975), data concerning medical school
applications (Wainer & Brown, 2004) and data regarding administering peni-
cillin to children with meningococcal disease (Harnden et al, 2006). The
analysis based on the CSR removes the paradoxical elements present in the
published analyses of these data sets and gives new insight into the relation-
ships among the variables involved. The practice of using the net approval
rate in opinion polls is also discussed and is shown to be equivalent to using
the CSR.

Section 5 points to possible extensions of the CPR and of the CSR
beyond 2× 2 decision tables. When comparing several treatments, both the
CPR and the CSR are transitive. Extensions of the CSR and of the CPR
based on (1) and on (2) to situations with more than two different responses
show that Simpson’s paradox may occur with the generalized CPR but the
generalized CSR remains free from it.

Section 6 concludes the paper with a brief discussion.

2. Decision functions

This section gives an axiomatic treatment of decision functions. Obvious
properties that decision functions have to possess are postulated. Based
on these properties, the relationship between invariance against changes in
allocation and the possibility of Simpson’s paradox to occur, and the roles
played by the CPR and the CSR among decision functions will be clarified.
To simplify presentation, all cell entires will be assumed to be positive.

The first two properties describe noninformative sets of data, that is data
that imply that no treatment is preferable to the other. A data set is not
informative for treatment selection if the number of positive and negative
responses is the same within both treatments.

Property 1
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γ

(
a a

b b

)
= 0.

A data set is also not informative if the same frequencies are observed in
the response categories of both treatments.

Property 2

γ

(
a b

a b

)
= 0.

The next two properties postulate simple antisymmetries: if the rows are
interchanged, then the decision changes to the opposite,

Property 3

γ

(
a b

c d

)
= −γ

(
c d

a b

)
,

and if the positive and negative responses are interchanged, then the decision
changes to its opposite.

Property 4

γ

(
a b

c d

)
= −γ

(
b a

d c

)
The last two properties describe data sets that imply that the first treat-

ment is better than the second one. This is the case if Tr1 has more positive
than negative responses and Tr2 does not have more positive than negative
responses,

Property 5

a > b, c ≤ d⇒ γ

(
a b

c d

)
= 1,

and this is also the case when the two treatments have the same number of
negative responses but Tr1 has more positive responses than Tr2:

Property 6

a > c, d = b⇒ γ

(
a b

c d

)
= 1.

In what follows, only decision functions with the above properties will be
considered. Three further properties, not necessarily possessed by a decision
function, will play a central role in the analysis of decision functions. The
first one is related to combining data sets and means that Simpson’s paradox
cannot occur.
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Consistency

if γ(T1) = γ(T2), then γ(T1 + T2) = γ(T1). (3)

The second one addresses a related issue, namely the combination of decisive
data (that is, data where one treatment appears to be better than the other
one) with noninformative data in Properties 1 and 2.

Indifference

If γ(T ) = 0 by Property 1 or Property 2, then γ(T1+T ) = γ(T1), for all T1.

Note that indifference does not assume that adding any T with γ(T ) = 0
leaves the decision unchanged.

An important aspect of the argument in this paper is the distinction
between decision functions that are and that are not sensitive to changes in
allocation into treatment categories.

Invariance against changes in allocation

γ

(
a b

c d

)
= γ

(
ta tb

uc ud

)
(4)

for every table and all positive t and u.
The following result may be verified directly.

Proposition 1. Properties 1 to 6 hold true for both CPR and CSR.
Further, CPR is not consistent and not indifferent but is invariant against
changes in allocation, CSR is consistent and indifferent but is not invariant
against changes in allocation.

�
Proposition 2. If a decision function is invariant against changes in allo-
cation, then it is equal to the CPR.

�
The proofs of the results of the paper are given in the Appendix.
Propositions 1 and 2 readily imply

Proposition 3. If a decision function is consistent, then it cannot be in-
variant against changes in allocation. �

The variation independence of the odds ratio from the marginals of the
two-way contingency table, which is a very desirable property of it when
used as a measure of association (see, e. g., Rudas (1998)), turns out to
be the ’reason’ that Simpson’s paradox may occur, when used as a decision
function.
Proposition 4. Any indifferent decision function is equal to the CSR.
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�
Propositions 1 and 4 imply

Proposition 5. If γ is indifferent then it is also consistent.
�

The next important result is
Proposition 6. Any consistent decision function is equal to the CSR.

�
The foregoing results are summarized in

Proposition 7. The following three statements are equivalent
(a) γ is consistent
(b) γ is indifferent
(c) γ = CSR .

�
Indifference and consistency are equivalent and every decision function

with these properties is equal to the CSR, if Properties 1 – 6 are assumed
to hold. Invariance against changes in allocation, on the other hand, implies
that the reversal may occur and every such decision function is equal to
the CPR. However, if there are equal allocations into the two treatment
categories of T , then the CSR and the CPR reach the same conclusion.
Proposition 8. If a+ b = c+ d, then CSR(T ) = CPR(T ).

�
To complete this section, we note that the indifference property used so

far implies a more general indifference.
Proposition 9. If γ is indifferent, then γ(T1) = 0 implies that

γ(T1 + T2) = γ(T2)

for all T2.
�

3. Statistical properties of the CSR and the CPR

Because the CSR is proposed here as a decision function, out of its
statistical properties, the probability of wrong decision is of central interest.
A wrong decision is to choose Tr1 (Tr2) based on the observed value of the
CSR when its population value is equal to -1 or 0 (+1 or 0). This probability
is easily evaluated under multinomial sampling. Suppose that the treatment
by response table in the population has the following distribution

pa pb

pc pd
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and the relevant random variables behind observations a, b, c, d are A, B, C,
D, respectively. When (A,B,C,D) has a multinomial joint distribution with
parameters n (= a+b+c+d) and (pa, pb, pc, pd), then A+D ∼ B(n, pa+pd).
Proposition 10. The probability of wrong decision under multinomial
sampling with the CSR if pa + pd > pb + pc is

Φ(
1
2
√
n

1− csr√
csr

) + o(1),

where Φ is the standard normal distribution function.
�

Exact probabilities of wrong decision are given for selected values of n
and of pa + pd in Table 1. As one would expect, the probability of choosing
Tr2, when Tr1 is better, reduces with increasing values of the csr and with
increasing sample sizes. For values of pa +pd, or of the csr, larger than those
reported in Table 3, the probability of wrong decision is zero for the sample
sizes investigated. The same table may be used to read off the probability
of wrong decision when CSR = −1: one simply has to use the entry 1/csr
in these cases.

*** Table 1 around here ***

Threshold values of csr, for different sample sizes, such that if the true
csr is greater than the respective threshold value, the probability of wrong
decision (concluding from the sample that CSR = −1 or CSR = 0) is less
than 0.05, are given in Table 2. The reciprocals of these values are similar
thresholds in cases when csr < 1.

*** Table 2 around here ***

Comparable results are difficult to obtain for the CPR, mainly because
its variance, even asymptotically that could be used to calculate an approx-
imation, does not only depend on the value of the cpr, but rather on the
individual cell probabilities.

For purposes of comparison, for each sample size investigated, 1000 2×2
tables were generated that had the csr values given in Table 2. These tables
had uniformly distributed pa and pb values and the pc and pd values were
implied. Then the probability of wrong decision was approximated using
the asymptotic distribution of the logarithm of the cpr (see e.g., Agresti
(2002) for a review of the large sample properties of the cpr). In each
case, the probability of wrong decision was determined with reference to
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the correct decision according to the CPR which, in some cases, was the
opposite of the decision suggested by the CSR. Table 3 reports the average
approximate error probabilities. Note that the average is taken here as a
simple descriptive statistic and no assumption concerning a superpopulation
of 2×2 tables is made. The average error probabilities for the CPR were
considerably higher than those for the CSR but the advantage of the CSR
seemed to decrease with increasing sample size. These results indicate that
decisions based on the CSR are more stable in the statistical sense than
those based on the CPR.

*** Table 3 around here ***

Because the CSR takes on three values only, the construction of confi-
dence intervals simplifies to the question whether or not a confidence interval
with a given level of confidence contains any value of the CSR, other than
the observed one.
Proposition 11. If CSR = 1 is observed under multinomial sampling, an
asymptotic 1 − α level confidence interval for the true value of CSR does
not contain 0 or -1 if

1− Φ(
2(a+ b)− n√

n
) < α. (5)

�
When the value of CSR = 1 is observed in the data, one can say that a

95% confidence interval does not contain 0 or -1, if the csr is such that the
left hand side of (5) is less than 0.05. Threshold values of the csr, such that
the left hand side of (5) is equal to 0.05, for various values of n, are given
in Table 4.

*** Table 4 around here ***

When the sampling scheme specifies the row marginals of the decision
table, allocation in the treatment categories is not informative and the use
of the CPR is not suggested. When the column marginals are fixed, say N+

and N−, as in a case-control study, and sampling is product multinomial,
the probability of wrong decision with the CSR if pa + pd > pb + pc is

∑
0≤A≤N+

(N+

A

)
pA

a p
N+−A
c

∑
A+(N−−N+)/2≤B≤N−

(
N−
B

)
pB

b p
N−−B
d

 ,
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where [.] means integer part. Using X = A−C and Y = B−D, similarly to
Proposition 10, a normal approximation of this probability may be obtained.
Proposition 12. Under product multinomial sampling, with fixed N+ and
N−, the probability of wrong decision with the CSR, when pa +pd > pb +pc,
is

Φ(
EY − EX√
VX + VY

) + o(1),

where
EX = N+(pa − pc), EY = N−(pb − pd)

VX = 4N+
pa

pa + pc

pc

pa + pc

VY = 4N−
pb

pb + pd

pd

pb + pd

�

4. Applications of the CSR

In this section we revisit three data sets where inconsistent findings using
the CPR have been discussed in the literature and compare the standard
analysis to that of obtained by using the CSR, and also discuss the practice
of using the net approval rates in opinion polls that is closely related to the
CSR.

4.1. Berkeley admissions
The first example we consider is the famous Berkeley admissions data

(Bickel et al, 1975). Here, the gender by admission status table shows that
male applicants had a higher chance of being admitted to the graduate school
than female applicants had, and this observation raised the question of gen-
der discrimination. When the data are studied at the departmental level,
it turns out that female applicants had an advantage in all departments
where there was a considerable difference between the admission rates. The
marginal admission rate was favorable to male applicants because they ap-
plied in larger fractions to departments where the overall admission rate was
high, while female applicants tended to apply to departments with lower
overall admission rates. Because admission decisions were made at the de-
partmental level, the suspicion of gender discrimination was refuted. This
analysis is widely accepted today and is also reported in textbooks (see, e.g.,
Freedman et al (1998)).
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The foregoing analysis used, essentially, the CPR and gave an explana-
tion of the paradox that relies on different allocations. In other words, an
analysis that is not sensitive to allocation, suggests that allocation should
be taken into account. If so, the analysis based on the CPR is not appro-
priate, rather, an analysis using the CSR, which is sensitive to allocation,
is needed. Table 5 contains the values of these decision functions for the six
largest departments based on the data as reported in Freedman et al (1998).

*** Table 5 around here ***

The analysis based on the CSR shows that in four out of the six depart-
ments and in both totals, men have an advantage, including Department A,
where the CPR found the largest female advantage. In the remaining two
departments (D and F) women have an advantage according to the CSR,
although a 95% level confidence interval for the true value of the CSR con-
tains 1 (that is, male advantage). The CSR shows an overwhelming male
advantage in the entire admission procedure, including application and se-
lection. Although there was no male advantage when selection was looked
at only using the CPR, the fact that men tended to apply to programs with
high admission rates (or programs where men applied tended to have high
admission rates), points to a male advantage indicated by the CSR that
is sensitive to allocation and, therefore, can incorporate the effects of both
application and selection in the admission process. Of course, whether or
not this advantage has a discriminatory nature, cannot be decided based on
the data only.

4.2. Medical school applications
Wainer & Brown (2004) reported medical school application percentages

for MCAT Biological Sciences test takers with various scores. In all score
groups, black test takers applied to medical schools in larger fractions than
white test takers did. In spite of this, among all test takers, whites applied
to medical school in larger fraction than blacks did. Again, the paradox
goes away when the CSR is used to decide whether blacks or whites tend to
apply more typically to medical school. For test results up to 7, blacks tend
to apply to medical school and for scores higher than 7, white test takers
apply more typically to medical school, and the same is true when the test
scores are disregarded. The cpr and csr values are given in Table 6.

*** Table 6 around here ***
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4.3. Administering penicillin to meningococcal disease patients
The effect of administering parenteral penicillin to children with meningo-

coccal disease (MC) before admission to hospital has been the subject of
considerable debate. Harnden et al (2006) reported a cpr of 5.96 indicating
a sizable association between administering penicillin and death for children
with MC diagnosed prior to hospital admission. Although they warned that
it might very well be the case that severity of the disease increased the
chances of administering penicillin and the increased odds of death among
those who received penicillin might be a consequence of this selection, a
British Medical Journal editorial, based on the CPR, went as far as saying
that ’Prehospital penicillin for MC may be harmful...’. Other contribu-
tions supported the practice of administering penicillin (York, 2006). In a
commentary (Perera, 2006), the contributing statistician described that the
odds ratio obtained depended strongly on whether all children with MC or
only those for whom the GP diagnosed the disease were taken into account.
For the former group the odds ratio of death as opposed to survival, for
those who did versus those who did not receive penicillin, was 0.86. Thus,
overall, there appeared to be a small protective effect but for those with
a diagnosed MC, there was harm associated with administering penicillin,
a conclusion that seemed somewhat paradoxical. Given the relatively lim-
ited information about covariates, in conclusion, Perera (2006) warned that
’strong associations are not necessarily causal’.

The two data sets (Perera, 2008) are reported here as Tables 7 and
8. They are examples of the situation when CSR= - CPR. The data
came essentially from an observational study. Allocation is informative, not
only concerning the numbers treated but also because of the best judgment
applied by the GP’s. Consequently, the application of the CPR may not
be appropriate. For children with MC diagnosed before hospital admission,
csr=0.79 (CSR=-1, not significantly different from CSR=0 or 1). For all
children with MC, csr=1.73 (CSR=1, significantly different form CSR=0
or -1).

*** Table 7 around here ***

*** Table 8 around here ***

For children with MC diagnosed before hospital admission, the CSR sug-
gests a beneficial effect of penicillin, in conformity with expectation, however
this effect is weak. For all children, the CSR suggests harm associated with
penicillin. The conclusion based on the CSR confirms the intuition of Harn-
den et al (2006), who assumed that those who did receive penicillin could
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be more seriously ill than those who did not receive penicillin. However, as
suggested by the CSR, this applies not within the group of those with an
early MC diagnosis but rather to all children who later turned out to have
MC. Our results, based on the CSR, support the practice of administering
penicillin to children who are diagnosed with MC.

4.4. Net ratings in opinion polls
It is very common in the polling industry to use net ratings (or net

approval rates) to compare the public’s view on two politicians (e.g., two
candidates for an office). The net rating is the difference between the per-
centage of those who say a certain characteristic applies minus the percent-
age of those who say it does not apply to the politician (see, e. g., Gallup
& Newport (2006)).

If the following data are observed for a given characteristic

Response Applies Does Not Apply No Opinion
Politician A a b e

Politician B c d f

then the net approval rates of the two politicians are a − b and c − d, re-
spectively. A comparison of the two politicians’ approvals based on the net
approval rates is exactly the same as their comparison based on the CSR in
the following table:

Response Applies Does Not Apply
Politician A a b

Politician B c d

Note, that in the first table a + b + e = b + c + f (the same sample is
interviewed about the politicians) but in the second table a + b 6= c + d
(because of differences in the numbers of people who know them). The use
of the net ratings is suggested to reduce or eliminate the effect of different
levels of name recognition that is, different allocations of those who have an
opinion. On the other hand, there seems to be no trace in the published
literature of the ratio of positive to negative ratings being used as a means of
comparing the overall approval rates, which would be parallel to a decision
based on the CPR.

5. More general decision tables

A reviewer asked whether any of the above results can be extended be-
yond 2× 2 tables. This section gives a brief discussion of such possibilities.
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First note that Simpson’s paradox is a lack of collapsibility property
in 2 × 2 × 2, or more generally, K × 2 × 2 decision tables, where the two
treatments are observed under 2 (or K) different scenarios. Here, decisions
based on the CSR are collapsible in the sense that if the same treatment is
better in each of the 2 (or K) conditions, then the same treatment is also
better overall. This is not always true for decisions based on the CPR.

When several treatments are compared in an I × 2 decision table, both
the CSR and the CPR lead to decisions that are transitive. More precisely,
it is easy to see that
Proposition 13. Consider three treatments Tr1, Tr2, Tr3 and decision
tables Tij comparing Tri to Trj. For γ = CSR and γ = CPR, if γ(T12) = 1
and γ(T23) = 1, then γ(T13) = 1, that is if Tr1 is better than Tr2 and Tr2
is better than Tr3, then Tr1 is also better than Tr3.

�
When two treatments are compared using polytomous outcomes, like

categories very good, good, bad, very bad, an extension of the decision
procedure from 2× 2 tables to 2× J tables is needed.

If in the 2 × J decision table the observed response frequencies of Tri
are fi = (fi,1, . . . , fi,J), in a descending order of desirability, define δj ,
j = 1, . . . , J − 1, for an arbitrary nonnegative vector v = (v1, . . . , vJ) of
dimension J , as

δj(v) = (v1 + . . .+ vj)− (vj+1 + . . .+ vJ),

so δj(fi) is the difference of the number of responses in the j best categories
and of the number of responses in the J − j worst response categories for
treatment i. A generalization of the CSR (see (1)) is obtained by considering
Tr1 better than Tr2 if

sgn(δj(f1)− δj(f2)) = 1 for all j = 1, . . . , J − 1,

and a generalization of the CSR (see (2)) is obtained by considering Tr1
better than Tr2 if

sgn(δj(
f1
f1+

)− δj(
f2
f2+

)) = 1 for all i = 1, . . . , J − 1,

where fi+ is the sum of all observations for Tri. Again, the generalizations
of the CSR and of the CPR are based on the same function but the CSR
uses the observed conditional frequencies and the CPR uses the observed
conditional probabilities, just like in (1) and (2). Thus, the CSR remains
sensitive to allocation and the CPR remains not sensitive to allocation in
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these generalized forms. Also, Simpson’s paradox may occur with the gen-
eralized CPR and does not occur with the generalized CSR.

The generalizations suggested above are related to the concept of stochas-
tic dominance (of responses to Tr1 versus those to Tr2) but this aspect is
not going to be pursued in this paper. For Tr1 to be better than Tr2, these
generalizations require the same relation to hold in all 2× 2 decision tables
that are obtained from the 2 × J decision table by a monotone combina-
tion of responses into two groups. Whether or not this is an appropriate
definition, depends on the actual decision problem, of course.

6. Discussion

This paper considered the problem of selecting the better one out of two
treatments. Such decisions are mostly obtained by using functions of the
data closely related to the odds ratio. The possibility or the actual occur-
rence of Simpson’s paradox in such decisions has been the subject of much
scholarly work, some explaining under what conditions the paradox may
or may not occur, some making suggestions for choosing the better treat-
ment if it did occur. This paper takes the position that a real evaluation of
various decision procedures is not possible unless at least minimal require-
ments for the behavior of decision procedures are postulated. Based on six
such ’axioms’, various decision procedures were investigated. It was argued
that when allocation into the treatment categories is informative (observa-
tional studies or designed experiments with dropout or noncompliance), it
is desirable to use decision functions which are sensitive to allocation. In
addition, it turned out that all decision procedures which are not sensitive
to allocation may exhibit Simpson’s paradox, so a good way to avoid it is to
use decision procedures which are sensitive to allocation, at least when the
allocation is informative. The main results of the paper included that all
decision procedures which are not sensitive to allocation always reach the
same decision as the CPR and all decision procedures which never exhibit
Simpson’s paradox always reach the same conclusion as the CSR does. The
paper also discussed statistical properties of the CSR and suggested possible
generalizations to more complex decision problems.

The illustrative applications of the CSR to data that had been ana-
lyzed by the CSR showed that the conclusions are sometimes different. Our
statistical education relies strongly on the CPR and we all may feel the
conclusions reached by the CSR counter-intuitive in some cases. The fre-
quent controversies around decisions reached by the CPR should suggest to
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consider using, in the case of informative allocation, the CSR that is a logi-
cally sounder decision procedure. However, the CSR and the CPR are not
that different: they are based on the same function applied to conditional
frequency or to conditional probability distributions of the responses in the
two treatment categories.

7. Acknowledgments

The author is indebted to Antonio Forcina, Adrian Raftery and Joe
Shafer for helpful discussions and to Rafael Perera for kindly allowing to
use the data in Tables 7 and 8. Part of this research was done while the
author was a visitor in the Center for Statistics and the Social Sciences
and the Department of Statistics, University of Washington, where he is
now an Affiliate Professor. The author is also a Recurrent Visiting Profes-
sor at the Central European University and the moral support received is
acknowledged.

References

Agresti, A. (2002) Categorical Data Analysis, 2nd edition. New York:
Wiley.

Aldrich, J. (1995) Correlations genuine and spurious in Pearson and Yule.
Statistical Science, 10, 364-376.

Bickel, P. J., Hammel, E. A. & O’Connell, J. W. (1975) Sex bias in graduate
admissions: data from Berkeley. Science, 187, 398-404.

Blyth, C. R. (1972) On Simpson’s paradox and the sure-thing principle.
Journal of the American Statistician Association, 67, 364-366.

Craemer, H. C. (2004) Reconsidering the odds ratio as a measure of 2x2
association in a population. Statistics in Medicine, 23, 257-270.

Curley, S. P.& Browne, G. J. (2001) Normative and descriptive analyses
of Simpson’s paradox in decision making. Organizational Behavior and
Human Decision Processes, 84, 308-333.

Davies, H. T. O., Crombie, I. K. & Tavakoli, M. (1998) When can odds
ratios mislead? British Medical Journal, 316, 989-991.

Dawson, B. & Trapp, R. G. (2004) Basic and Clinical Biostatistics.
McGraw-Hill Professional.

17



Diggle, P., Heagerty, P., Liang, K. Y. & Zeger, S. L. (2002) Analysis of
Longitudinal Data. Oxford University Press.

Freedman, D., Pisani, R. & Purves, R. (1998) Statistics. New York: Norton
& Company.

Gallup, A. M. & Newport, F. (2006) The Gallup Poll: Public Opinion 2004.
Lanham, MD: Rowman & Littlefield.

Goldstein, L. B. & Simel, D. L. (2005) Is this patient having a stroke?
JAMA, 293, 2391-2402.

Harnden, A., Ninis, N., Thompson, M., Perera, R., Levin, M., Mant, D. &
Mayon-White, R. (2006) Parenteral penicillin for children with meningo-
coccal disease before hospital admission: case-control study. British Med-
ical Journal, 332, 1295-1297.

Lindley, D. V. & Novick, M. R. (1981) The role of exchangeability in
inference. The Annals of Statistics, 9, 45-58.

Meek, C. & Glymour, C. (1994) Conditioning and intervening. The British
Journal for the Philosophy of Science, 45, 1001-21.

Pearl, J. (2000) Causality. Cambridge University Press.

Perera, R. (2006) Commentary: Statistics and death from meningococcal
disease in children. British Medical Journal, 332, 1297-1298.

Perera, R. (2008) Personal Communication.

Rosenbaum, P. (1995) Observational Studies. New York: Springer.

Rudas, T. (1998) Odds Ratios in the Analysis of Contingency Tables.
Newbury Park: Sage.

Rudas, T. & Bergsma, W. (2004) Letter to the Editor. Statistics in
Medicine, 23, 3545-3547.

Schechtman, K. B. (2000) Patient compliance. In S. C. Chow (Ed), En-
cyclopedia of Biopharmaceutical Statistics (712-717). New York: Marcel
Dekker.

Wagner, C. H. (1982) Simpson’s paradox in real life. The American Statis-
tician, 36, 46-48.

18



Wainer, H.& Brown, L. M. (2004) Two statistical paradoxes in the inter-
pretation of group differences illustrated with medical school admission
and licensing data. The American Statistician, 58, 117-23.

York, J. (2006) British GPs practice excellent
medicine. British Medical Journal, Rapid Responses,
http://www.bmj.com/cgi/eletters/332/7553/1295.

Appendix

Proof of Proposition 2. Invariance against changes in allocation implies
that

γ

(
a b

c d

)
= γ

(
a b
b
dc

b
dd

)
= γ

(
a b
b
dc b

)
and by Property 6, γ(T ) = 1 if CPR(T ) = 1, and by Property 3, γ(T ) = −1
if CPR(T ) = −1. Finally, by Property 2, γ(T ) = 0 if CPR(T ) = 0.

�
Proof of Proposition 4. One has to see that for indifferent decision
functions γ
(a) if a+ d > b+ c then γ(T ) = 1
(b) if a+ d < b+ c then γ(T ) = −1
(c) if a+ d = b+ c then γ(T ) = 0

Part (a): If a = b then d > c and because of Property 5

γ

(
d c

b a

)
= 1

and Properties 3 and 4 imply that

γ

(
a b

c d

)
= 1.

If a > b then if d ≥ c, Property 5 implies the required result. If c > d,
then a− b > 0 and c− d > 0, therefore T = T1 + T2 with

T1 =
a− b+ 1

2min(b, d) 1
2min(b, d)

c− d+ 1
2min(b, d) 1

2min(b, d)
T2 =

b− 1
2min(b, d) b− 1

2min(b, d)
d− 1

2min(b, d) d− 1
2min(b, d)

and γ(T1) = 1 because of Property 6, for the condition in (a) may be written
as a − b > c − d, and γ(T2) = 0 because of Property 1. Then indifference
implies that γ(T ) = 1.
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If, finally, a < b then d > c and for the table

d c

b a

one has the same situation as for the

a b

c d

table in the last case and, therefore

γ

(
d c

b a

)
= 1

and Properties 3 and 4 imply that γ(T ) = 1 also in this case.
Part (b): Apply part (a) to

c d

a b

to obtain that if a+ d < b+ c then for any indifferent γ,

γ

(
c d

a b

)
= 1,

and then Property 3 implies the required result.
Part (c): In this case a− b = c− d. If a ≥ b then T = T1 + T2 with

T1 =
a− b+ 1

2min(b, d) 1
2min(b, d)

c− d+ 1
2min(b, d) 1

2min(b, d)
T2 =

b− 1
2min(b, d) b− 1

2min(b, d)
d− 1

2min(b, d) d− 1
2min(b, d)

and γ(T1) = 0 because of Property 2 and γ(T2) = 0 because of Property 1.
Then indifference implies the required result.

If a < b, then T = T1 + T2 with

T1 =
1
2min(a, c) b− a+ 1

2min(a, c)
1
2min(a, c) d− c+ 1

2min(a, c)
T2 =

a− 1
2min(a, c) a− 1

2min(a, c)
c− 1

2min(a, c) c− 1
2min(a, c)

and γ(T1) = 0 because of Property 2 and γ(T2) = 0 because of Property 1.
Then indifference implies the required result.

�
Proof of Proposition 6. We have to prove that for consistent decision
functions γ
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(a) if a+ d > b+ c then γ(T ) = 1,
(b) if a+ d < b+ c then γ(T ) = −1,
(c) if a+ d = b+ c then γ(T ) = 0.

Part(a): Assume first that a > b and c < d. In this case Property 5
implies that γ(T ) = 1. If a ≤ b and c < d then let x be any number such
that d− c > x > b− a. Then T splits into the following tables

T1 =
a− 1

2min(a, c) a− 1
2min(a, c)

c− 1
2min(a, c) d− x− 1

2min(a, c)
T2 =

1
2min(a, c) b− a+ 1

2min(a, c)
1
2min(a, c) x+ 1

2min(a, c)

Then γ(T1) = 1 because of Properties 3, 4, 5 and γ(T2) = 1 because of
Properties 3, 4, 6. Then by consistency, γ(T ) = 1. If c ≥ d then let x be
any number such that a − b > x > c − d. Then T splits into the following
tables

T1 =
a− x− 1

2min(b, d) b− 1
2min(b, d)

d− 1
2min(b, d) d− 1

2min(b, d)
T2 =

x+ 1
2min(b, d) 1

2min(b, d)
c− d+ 1

2min(b, d) 1
2min(b, d)

Here γ(T1) = 1 because of Property 5 and γ(T2) = 1 because of Property 6.
Consistency implies that γ(T ) = 1.

Part(b): Swapping the two columns of T and applying Property 4 shows
that γ(T ) = −1 = CSR(T ).

Part(c): If a < c, choose a positive number x such that x < min(a, b, c−
a). Then the split T into

T1 =
x x

c− a+ x c− a+ x
T2 =

a− x b− x
a− x b− x

With reference to Properties 1 and 2, consistency implies that γ(T ) = 0. If
a > c, apply Property 3 and the previous result to obtain that γ(T ) = 0. If
a = c, apply Property 1.

�
Proof of Proposition 7. Proposition 1 is that (c) implies both (a) and
(b). Proposition 4 is that (b) implies (c). Proposition 5 is that (b) implies
(a). Proposition 6 is that (a) implies (c).

�
Proof of Proposition 8. Let e = a + b = c + d so that b = e − a and
d = e− c. Then

ad = a(e− c) > / = / < (e− a)c = bc

if and only if
a > / = / < c,
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which happens if and only if

a+ d = a+ e− c > / = / < e− a+ c = b+ c.

�
Proof of Proposition 9. By Proposition 4, γ = CSR and the statement
is true for the CSR.

�
Proof of Proposition 10. When pa +pd > pb +pc, a wrong decision occurs
if A+D ≤ B + C or, equivalently, if A+D ≤ n/2.

Using the normal approximation to the binomial distribution, the prob-
ability of this event is

P (X ≤ n/2− n(pa + pd)√
n(pa + pd)(1− pa − pd)

) + o(1) = (6)

P (X ≤
√
n

0.5− pa − pd√
(pa + pd)(1− pa − pd)

) + o(1),

where X is a standard normal random variable.
The true (population) value of the csr is (pa +pd)/(pb +pc) and pa +pd =

csr/(1 + csr), thus (6) may be rewritten as

P (X ≤ 1
2
√
n

1− csr√
csr

) + o(1).

�
Proof of Proposition 11. A 1 − α level confidence interval for the true
value of CSR does not contain 0 or -1, when CSR = 1 was observed, if

t(
a+ d

b+ c
, u) = P (

A+D

B + C
>
a+ d

b+ c
| sgn(log

pa + pd

pb + pc
) = u) < α,

for u = 0 and u = −1. It is easily seen that

t(
a+ d

b+ c
, u) = P (A+D > a+ d | sgn(log

pa + pd

pb + pc
) = u).

The hypothesis CSR = 0 is simple but the hypothesis CSR = −1 is
composite and asymptotically

sup
csr<1

t(
a+ d

b+ c
,−1) = t(

a+ d

b+ c
, 0)
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and it is sufficient to determine the value of t for u = 0. Under the hypothesis
of CSR = 0, that is pa + pd = 0.5, the distribution of A + D is B(n, 0.5)
and asymptotically

t(
a+ d

b+ c
, 0) = 1− Φ(

2(a+ b)− n√
n

).

�
Proof of Proposition 12. X and Y are independent and asymptotically
normal. Therefore, asymptotically, X = 2A − N+ is normal with EX =
N+(pa− pc) and variance VX =4N+

pa

pa+pc

pc

pa+pc
and Y = 2B−N− is normal

with expectation EY = N−(pb − pd) and variance VY =4N− pb
pb+pb

pd
p)b+pd

.
Using independence, X−Y is asymptotically normal, with expectation EX−
EY and variance

√
VX + VY . The probability of wrong decision is

P (B + C > A+D) = P (B −D > A− C) = P (Y > X)

= P (X − Y < 0)

and P (X − Y < 0) is the same, asymptotically, as the probability that a
standard normal variable is less than

EY − EX√
VX + VY

�
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Table 1: Exact probabilities of wrong decision (CSR = −1 or CSR = 0) for various
sample sizes and population values of the csr, when CSR = 1

pa + pd pb + pc csr n = 100 n = 200 n = 500 n = 1000
0.51 0.49 1.04 0.4599 0.4158 0.3436 0.2739
0.52 0.48 1.08 0.3816 0.3100 0.1975 0.1086
0.53 0.47 1.13 0.3078 0.2178 0.0970 0.0309
0.54 0.46 1.17 0.2409 0.1437 0.0402 0.0062
0.55 0.45 1.22 0.1827 0.0887 0.0140 0.0008
0.56 0.44 1.27 0.1341 0.0511 0.0040 0.0001
0.57 0.43 1.33 0.0950 0.0273 0.0010 0.0000
0.58 0.42 1.38 0.0650 0.0136 0.0002 0.0000
0.59 0.41 1.44 0.0428 0.0062 0.0000 0.0000
0.60 0.40 1.50 0.0271 0.0026 0.0000 0.0000
0.61 0.39 1.56 0.0165 0.0010 0.0000 0.0000
0.62 0.38 1.63 0.0096 0.0004 0.0000 0.0000
0.63 0.37 1.70 0.0054 0.0001 0.0000 0.0000
0.64 0.36 1.78 0.0029 0.0000 0.0000 0.0000
0.65 0.35 1.86 0.0015 0.0000 0.0000 0.0000
0.66 0.34 1.94 0.0007 0.0000 0.0000 0.0000
0.67 0.33 2.03 0.0003 0.0000 0.0000 0.0000
0.68 0.32 2.13 0.0001 0.0000 0.0000 0.0000
0.69 0.31 2.23 0.0001 0.0000 0.0000 0.0000
0.70 0.30 2.33 0.0000 0.0000 0.0000 0.0000

Table 2: Minimum required population values of the csr to have wrong decision (CSR =
−1 or CSR = 0) probabilities not exceeding 0.05 for various samples sizes

Sample size 100 200 500 1000
Minimum value of the csr 1.4178 1.2743 1.1631 1.1119
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Table 3: Average approximate error probabilities for 1000 tables each having the csr values
given in Table 2, when the CPR is used for decision. In all tables, CSR = 1 and the
probability of wrong decision is 0.05 when the CSR is used. In some tables, CPR = −1,
in others CPR = 1 and wrong decision is always the opposite or CPR = 0

Sample size 100 200 500 1000
Average error probability of the CPR 0.12 0.10 0.08 0.07

Table 4: One-sided 95% confidence bounds for various sample sizes for the true value
of the CSR. When the observed value of csr exceeds (is less than the) value given, a
one-sided 95% confidence interval does not contain CSR = 0 and CSR = −1 (CSR = 0
and CSR = 1)

Sample size 50 100 200 500 1000 1500 2000 3000 5000
Observed csr > 1 1.61 1.39 1.26 1.16 1.11 1.09 1.08 1.06 1.05
Observed csr < 1 0.62 0.71 0.79 0.86 0.90 0.92 0.93 0.94 0.95

Table 5: Berkeley admissions: cpr and csr values for the six largest departments

Dept A Dept B Dept C Dept D Dept E Dept F Total Total
Depts A-F Grad School

cpr 0.36 0.80 1.14 0.91 1.23 0.85 1.84 1.46
csr 1.32 1.61 1.26 0.93 1.52 0.91 1.21 1.05

Table 6: Medical school applications: cpr and csr values for different MCAT-BS scores

Score 3 or less 4 5 6 7 8 9 10 or more Total
cpr 1.75 1.81 2.00 2.42 2.40 1.86 1.55 0.93 0.93
csr 1.17 1.57 1.72 1.62 1.20 0.87 0.61 0.48 0.77
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Table 7: Patients with meningococcal disease diagnosed before hospital admission (Perera,
2008). CPR = 1 (cpr = 5.96) and CSR = −1 (csr = 0.79)

Response Died Survived
Penicillin 22 83

No penicillin 2 45

Table 8: All patients with meningococcal disease (Perera, 2008). CPR = −1 (cpr = 0.86)
and CSR = 1 (csr = 1.73)

Response Died Survived
Penicillin 22 83

No penicillin 81 262
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