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 SUMMARY
 A framework based on mixture methods is proposed for evaluating goodness of fit in the
 analysis of contingency tables. For a given model H applied to a contingency table P,

 we consider the two-point mixture P = (1- r)I1 + rI2, with 7r the mixing proportion
 (O <, r < 1) and Hi and I2 the tables of probabilities for each latent class or component.
 In the unstructured approach recommended here, the mixture model applies H to HI but
 does not impose any restrictions on I2. A contingency table P can generally be
 represented as such a two-point mixture for an interval of 7r-values. We define our index
 of lack of fit, ir*, to be the smallest such 7r, i.e. 7r* is the fraction of the population that
 cannot be described by model H. This approach can be contrasted with the structured

 approach that applies model H to both H, and I2 and leads to conventional latent class
 models when H is the hypothesis of independence. The case where H is the hypothesis
 of row-column independence and P is a two-way contingency table is covered in detail,

 but the procedure is quite general.

 Keywords: CONTINGENCY TABLE; EM ALGORITHM; GOODNESS OF FIT; LATENT CLASSES;
 MISCLASSIFICATION

 1. INTRODUCTION

 The problem of evaluating goodness of fit in the analysis of contingency tables is
 considered from a new viewpoint by using mixture methods and simple modifica-
 tions of latent class analysis. The techniques proposed can be used as a supplement
 to the conventional analysis based on X2-statistics or quantities derived from them.
 The approach focuses attention on the substantive importance of the discrepancy
 between the model and the data, allows comparisons across samples or studies and
 permits an evaluation of the model that downplays the role of sample size. The
 approach is attractive in the common situation where the sample size is very large,
 but it can also be applied to the situation where n is not large.

 Throughout we suppose that a relatively simple model H is considered and that
 the goal is to evaluate how well this particular model describes the data. H might
 correspond to some standard null model, like independence or quasi-independence,
 or to some non-null model having simple structure. Examples of the latter include
 log-linear models excluding at least some higher order interactions if multidimen-
 sional tables are considered (Agresti, 1990), or association models for two-way
 tables (Goodman, 1984, 1985) or for multiway tables (Becker and Clogg, 1989),
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 624 RUDAS, CLOGG AND LINDSAY [No. 4,

 depending on the context. We give a new index called ir*, the mixing weight from
 a special unstructured two-point mixture, that represents the fraction of the popula-
 tion intrinsically outside model H. A method for calculating the maximum like-
 lihood estimator of x* is given along with interval estimators derived from the
 relevant profile likelihood. Although we restrict attention to the analysis of
 contingency tables here, in Section 9 we note that this index of fit derived from
 mixture concepts has a wide range of potential applications in other settings.

 The method is closely related to standard procedures for latent class analysis
 (Lazarsfeld and Henry, 1968; Goodman, 1974; Clogg and Goodman, 1984; Clogg,
 1988; Haberman, 1979). The relationship to the conventional latent class model for
 two-way contingency tables in Clogg (1981) or Goodman (1987) will be brought out
 in the examples; our proposed method is contrasted with the conventional latent
 class model (or the structured approach) in Section 8.

 For a contingency table with N cells, denote the cell probabilities as P = {Ph,
 h 1, . . ., N}. Multinomial sampling is assumed with expected frequencies
 F {Fh, h = 1, . ., N}, with Fh = nPh for the hth cell. Observed frequencies are
 denoted as f, or fh for the cell frequency, with Eh fh = n, the sample size. The
 conventional approach for assessing goodness of fit is covered in several standard
 sources (see, for example, Bishop et al. (1975) and Agresti (1990)). First, the maxi-
 mum likelihood estimate of P (or F) is obtained. Second, the agreement between
 the model and the data is assessed with conventional goodness-of-fit statistics, such
 as the Pearson statistic, the likelihood ratio statistic or other members of the power
 divergence family (Read and Cressie, 1988). Third, in cases where the fit statistics
 provide evidence for lack of fit, residual analysis might be used. Residual analysis
 usually entails examination of cell-by-cell components of x2-statistics or quantities
 closely related to them. Other commonly used procedures for model evaluation
 include collapsing categories and refitting the model, comparing measures of
 association for H and competing models, and using indexes based on prediction
 criteria or information criteria such as the Akaike information criterion (see
 Atkinson (1981)). Many of the available procedures are reviewed in an applied
 context by Fowlkes et al. (1988). To our knowledge, indexes of 'fit' based on predic-
 tion or information criteria extract a penalty for sample size but do not remove the
 effect of sample size as such, and it is difficult to interpret the magnitudes of those
 indexes in substantive ways.

 Conventional methods for evaluating contingency table models rely on x2-
 statistics or quantities derived from them. When the sample size n is not large, the
 usual asymptotic theory justifying x2 -approximations might not be appropriate;
 see, for example, Rudas (1986) and Read and Cressie (1988). Alternatives to the
 usual goodness-of-fit statistics are important to consider in these situations.

 Assessing goodness of fit in cases where the sample size is very large presents a
 different problem. In this case the asymptotic justification for X2-statistics is
 secure, but different fit statistics (Neyman, Pearson, likelihood ratio, etc.) can
 give different impressions about the magnitude of the discrepancy between the
 model and the data when the model is not true. The model will usually be
 'rejected' in favour of some more complicated model if the sample is suffi-
 ciently large. Goodness-of-fit statistics are usually not informative when the
 sample size is very large. We begin with two examples that illustrate the need for
 alternatives.
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 TABLE 1

 Cross-classification of eye colour and hair colourt

 Eye colour Hair colour
 Black Brunette Red Blonde

 Brown 68 119 26 7

 Blue 20 84 17 94
 Hazel 15 54 14 10
 Green 5 29 14 16

 tn = 592; source, Snee (1974) and Diaconis and Efron (1985).

 2. TWO EXAMPLES-

 Diaconis and Efron (1985) provided a volume test interpretation of the Pearson
 statistic (for the independence hypothesis applied to a two-way table) that pertains
 to model evaluation in large or very large samples. Table 1, considered earlier by
 Snee (1974), is a 4 x 4 table cross-classifying eye colour and hair colour. The sample
 size n = 592 which is certainly large, although perhaps not very large. The Pearson
 statistic for the independence model is X2 = 138.290 on 9 degrees of freedom, and
 the likelihood ratio statistic is L2 = 146.444; the index of dissimilarity is D = 0.184.
 The model would be rejected on the basis of these quantities. (The statistic D =

 (Eh Ifh - )/2n is often used to remove the sample size effect, especially for data
 in the social sciences. A D-value close to 0 indicates a good fit, but the upper bound
 of D is less than 1 and varies with the model being considered.)

 Diaconis and Efron (1985) found that, among all 4 x 4 tables with n = 592 (no
 margins fixed), approximately 10Wo have X2-values less than 138.29 when sam-
 pling uniformly from the relevant universe. They concluded that the given 4 x 4 table
 does not lie particularly close to independence, confirming the inference drawn from
 the conventional goodness-of-fit statistics.

 Table 2 was originally published in Cramer (1946). This 5 x 4 table cross-classifies
 number of children by (grouped) annual income levels. The sample size n = 25263,
 which is very large. The fit statistics are X2= 568.566 and L2 = 569.420 on 12
 degrees of freedom, and D = 0.056. Both x2-statistics obviously lead to rejection
 using conventional criteria. However, the D-value is relatively small indicating that

 TABLE 2

 Cross-classification of number of children by annual incomet

 No. of children Annual income
 0-1 1-2 2-3 3 +

 0 2161 3577 2184 1636
 1 2755 5081 2222 1052
 2 936 1753 640 306
 3 225 419 96 38
 4+ 39 98 31 14

 tn=25263; source, Cramer (1946) and Diaconis and Efron (1985).
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 only about 6% of the observations would have to be reallocated to match the predic-
 tions of the model. Diaconis and Efron (1985) found that, among all 5 x 4 tables
 with n = 25263 (no margins fixed), the proportion of those with X2 < 568.576 is
 2.1 x 10-7. They concluded that the observed table is close to independence, which
 is quite at odds with the conclusion drawn from the x2-values.

 The qualitative inferences obtained from our method lead to conclusions that are
 consistent with those reached by Diaconis and Efron even though we proceed from
 an entirely different starting point. Our approach gives a simple index of fit -the
 mixing weight ir* defined in Section 4 as the fraction of the population outside
 the model -that allows comparisons across samples or across models. Note that the
 Diaconis-Efron method would require modification if some other statistic besides
 the Pearson statistic were used, if some hypothesis other than independence were
 considered or if the table analysed pertained to more than two variables and some
 hypothesis besides independence or conditional independence were considered. Our
 approach can be applied to arbitrary contingency tables (not just two-way tables),
 and it can be applied to examine virtually any model (not just the independence
 model).

 3. FINITE MIXTURE APPROACH AND LATENT CLASS ANALYSIS: GENERAL
 CONSIDERATIONS

 The family of models that we propose for evaluation purposes is

 Ph = (l-r)Hllh + lrH2h; Hl EH, H2 unspecified, for h=1, . . ., N, (1)

 with ir denoting the mixing weight. ir is the fraction of the population outside model
 H and 1 - ir is therefore the fraction of the population described by H. For each
 7r, let H, denote the model described by equation (1) with ir fixed, with Ho there-
 fore equal to H and H1 the completely unrestricted model.

 This model is a two-point mixture. The mixing distribution can be represented by
 a dichotomous (Bernoulli) variable, say X, with P(X= 1 ) = 1 - ir and P(X= 2) = -r.
 Let Yh be the indicator variable for cell h, i.e. Yh = 1 if cell h is observed and Yh = 0
 otherwise. The quantity 11th refers to the conditional probability of cell h given that
 the observation is drawn from latent class t, t = 1, 2 and h = 1, . . ., N, i.e. 1lth =

 P( Yh = I IX= t). The mixing proportion ir can take on any value in the interval
 O < ir < 1, but we suppose that ir is relatively small. When ir = 0 the original model
 is obtained, so model (1) is a generalization of the model originally specified for P.

 If the model H had been assumed for both latent classes (i.e. IIl E H, II2 e H),
 then model (1) is a two-class latent structure model. If H is the model of
 independence between (among) factors, the usual latent class model is obtained
 (Lazarsfeld and Henry, 1968; Goodman, 1974). However, H need not be the model
 of independence; other models can be used. The lack of restrictions on H2 ensures
 that the model for P is a two-point mixture that generalizes both H and the usual
 two-class latent structure in these other cases.

 4. 'SATURATED' TWO-POINT MIXTURE WITH IDENTIFIED MIXING

 WEIGHT 7r*

 Let us consider for the moment how researchers ordinarily proceed in assessing
 the evidence for or against a particular model in practice. If the model (H) is
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 rejected, then other models that are more comprehensive are considered, e.g. a set
 of models Hl, . . ., Hv, each of which contains H as a special case. Of course, if
 the sample is sufficiently large, this procedure will often lead to a saturated model,
 say Hs, with the property that Fh =fh for all h. For the class of hierarchical log-
 linear models, for example, H might be the model fitting all two-factor marginals
 (i.e. including all two-factor interactions), and H1, ..., H, might be models
 including higher order interactions in succession. If the sample size is sufficiently
 large, in many or most cases the researcher will conclude that only model Hs is
 congruent with the data. How can we summarize the magnitude of interactions left
 out in the model originally specified for the data? This question is related to but
 different from the analysis of residuals; residuals under model H are normally
 assessed assuming that the model holds true at least approximately.

 We now consider an approach based on the two-point mixture of model (1) that
 can be tied to the objectives implicit in standard practice, i.e. we wish to measure
 the degree of congruency of model H with the data to summarize the importance
 of factors, like higher order interactions, that are left out of H.

 First note that as ir varies the class of models H, varies from Ho, the restricted
 model, to H1, the completely unrestricted model. Moreover, the class of models
 grows monotonically, because H, C H,, for ir < 'r'. This follows by an elementary
 argument. Rewrite P = (1 - r)HI + rHII2 as P = (1- ir')H1 + (r' - ')1H + 'TI2
 - (1--,r')11l + 'ir', say. Thus, if the data are not fitted well by H, we can
 expect that as 'r increases the model H, will become an adequate fit for 'r suffi-
 ciently large. This simple idea is exploited next to construct an index of fit based
 on the mixture model construction.

 For any distribution P, we associate with it a value xr* that represents the smallest
 'r such that PEHX, i.e. we define the functional 7r*(P) as

 7*(P) = inf {7r: P = (1 - 70r)11 + 7rll2; II1 EH, 112 arbitrary}. (2)
 In words, ir* is the smallest wr such that P can be fitted exactly by model H. Note

 that the nested nature of the Hr-models implies that P H, for 7r' E ('r*, 1]. Let
 f denote an observed frequency distribution, and let P = f/n be the unrestricted
 maximum likelihood estimator of P. Now define 7-** by

 **= w*(P). (3)
 Note that 'r* is uniquely defined by virtue of definition (2) using the property that
 P is unique. It follows that the maximum likelihood estimator of ir*(P) is ** as
 defined by equation (3).

 The proposed index of fit described above can be interpreted easily and naturally
 in terms of the mixture representation. Essentially, the lack of fit of H is sum-
 marized in H2, and the relative size of the parameter values (or interactions)
 omitted from H is summarized by the mixing weight xr*. Stated another way, 1 - x*
 is the proportion of the population intrinsically described by H and xr* is the propor-
 tion intrinsically not described by H. The quantity ** defined above is the relevant
 maximum likelihood estimator.

 Several analogues to our approach can be found. Goodman (1975) considered
 a scaling model derived from Guttman's scaling model (analogous to our model H)
 and defined the part of the population where this model does not hold as the
 intrinsically unscalable class. Clogg and Sawyer (1981) presented this model as a
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 two-point mixture; the generalization to a wide class of scaling models was given
 in Dayton and Macready (1980). In these references as well as in most references
 on latent class analysis, the usual interpretation is that misclassification or measure-
 ment error accounts for the failure of H. As in these references, the quantity ir*
 could be viewed as a measure of the proportion of the population measured with
 error (or misclassified). See also Espeland and Hui (1987) for a similar perspective.
 The model and the diagnostic parameter r can also be recast in terms of the
 resistance concept of Ylvisaker (1977).

 An important property of the proposed index of the lack of fit is that if we have

 two models H and K, with H C K, then K* <, #H. This follows because H C K
 implies H, C K, so PEH, implies Pe KH*, i.e. the lack-of-fit index x* decreases
 as we consider progressively more comprehensive models.

 Our method of finding 7r* defined in equation (3) is as follows. For each fixed
 ir we maximize the likelihood over the model H,, (by the EM algorithm; see
 Section 6). The nestedness of the models H,, ensures that the maximized likelihood
 is monotonically increasing as ir increases. Equivalently, the log-likelihood ratio
 statistic L2(ir), for testing H, against H,, decreases in ir. The estimator ** is then
 the smallest ir for which L2(ir) =0.

 To summarize, we propose ir* as a simple index of lack of fit which describes
 the magnitude of 'left-out interactions' or 'left-out terms'. It is the minimum propor-
 tion of the population for which the two-point mixture is saturated, the fraction
 of the population intrinsically outside the model H.

 5. REANALYSIS OF EXAMPLES USING THE UNSTRUCTURED TWO-POINT
 MIXTURE APPROACH

 We consider first a modification of the method just described where ir is fixed
 at particular values. In this case, the EM algorithm is simple to apply; see Section
 6. The model to be evaluated is row-column independence (H), as before. H was

 assumed for the first latent class (i.e. for III), and the second latent class was
 unrestricted or unspecified. In Table 3 the x2-statistics for various fixed values of
 7r along with 7^r * are given for the data in Table 1. Note that when ir = 0 the original
 model is obtained. A monotonic reduction in L2-values is evident for increasing
 values of ir, and ^r* = 0.298 indicates that the original table is far from independence
 in that nearly 300/0 of the population would have to be regarded as outside the model
 (or as misclassified). For any value of X > 7 r*, the two-point mixture will also be
 saturated yielding fit statistics of 0. A lower (approximate) 95% bound for 7r* is
 7rL= 0.236, as noted in Table 3. (The construction of the lower confidence limit XrL
 is taken up in Section 6.)

 Table 4 gives the analogous results for the data in Table 2. A value of ir of about
 0.09 leads to an acceptable fit; the approximate 95Wo lower bound for lr* is 0.091,
 and ** = 0.104. Given the potential for misclassification in either or both factors
 in Table 2, a misclassification rate of the order of 10o is reasonable, but the main
 conclusion is that the data in Table 2 are closer to the hypothesis of row-column
 independence than are the data in Table 1. Our analysis gives the same qualitative
 impression about the suitability of row-column independence for each set of data
 as the Diaconis-Efron approach. Other models could be evaluated in the same way,
 and whether the 7r*-value of 0.104 is sufficiently small to denote acceptance of
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 TABLE 3

 Fit statistics for the unstructured mixture model applied
 to the data in Table It

 * ~~ ~ ~~X2 L2 |

 0.00 138.29 146.44
 0.10 47.35 48.67
 0.15 23.74 24.36
 0.20 8.55 8.75
 0.236 (=*vL) 2.57 2.66
 0.25 1.38 1.44
 0.26 0.83 0.87
 0.27 0.42 0.43
 0.28 0.16 0.16
 0.29 0.02 0.02
 0.298 (=r*) 0.00 0.00
 r 0.298 0.00 0.00

 tSee the text for the definitions of ** and iX.

 row-column independence depends on judgmental factors, including the objectives
 of the analysis.

 It is interesting to apply this approach to the 2 x 2 table where explicit formulae

 can be obtained. For the table of frequencies, {if, =a, f12= b, f21 = c, f22=d},
 consider the case where ad - bc> 0 and a> d. It can be verified that i * =
 (ad - bc)/an, where n = a + b + c + d, and the frequencies corresponding to U1, are
 {a, b, c, bc/a}, and the frequencies corresponding to 12 are {0, 0, 0, d- bc/a}.
 (These results change in obvious ways for other cases; if a= d, the expression for
 7r is unchanged but two solutions for the IU-tables in the mixture equation are
 possible.) Consider the 2 x 2 table, {f,1 = 60, f12 = 20, f21 = 20, f22 = 60}, X2 = 40.00.
 The value of # * is 3, which is of course unchanged if the frequencies are
 multiplied by a constant such as 0.1 or 100. This case is illuminating because it
 illustrates the indeterminacy (or lack of identification) of the other parameters in
 the Hr-model which arises in this case because a = d. The minimum ir is obtained

 TABLE 4

 Fit statistics for the unstructured mixture model applied
 to the data in Table 2t

 T ~~ ~ ~~x2 L2

 0.00 568.57 569.42
 0.07 22.37 22.64
 0.08 10.38 10.49
 0.09 3.07 3.09
 0.091 (=i,L) 2.58 2.59
 0.10 0.11 0.10
 0.104 (=r*) 0.00 0.00
 7r > 0.104 0.00 0.00

 tSee the text for the definitions of ** and XL.
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 with frequencies {60, 20, 20, 62 } corresponding to H1, and frequencies {0, 0, 0,
 531 } corresponding to H2 (***=531/160), or with frequencies {62, 20, 20, 60}
 corresponding to Hl, and frequencies {533, 0, 0, 0} corresponding to H2. If the
 frequencies had been {6, 2, 2, 6}, we would obtain X2 = 4.0, giving a dramatically
 different impression about significance. But the value of 7r* would be the same,
 conveying the fact that about 300/o of the population (estimate) is outside the model.
 The cell residuals take on absolute value 20 for the first case and absolute value
 2 for the second case. (For the 2 x 2 table, of course, there is just one non-redundant
 residual because there is 1 degree of freedom.)

 6. INTERVAL ESTIMATION

 Suppose that we adopt the point of view that the model H is to be rejected if
 it fails to explain the response of some (relatively large) fraction of the population,

 say 4.*. Then we wish to test the null hypothesis ir* < 4* against i* > x*.
 We here consider the asymptotic properties of the likelihood ratio statistic

 L2(4*) (and therefore of equivalent statistics) for testing this hypothesis. First note
 that, under the alternative, the likelihood will be maximized with fitted probabilities
 equal to the observed proportions. If x* = 0, we are therefore exactly in the setting
 of the standard likelihood ratio test of model H against the unrestricted multinomial
 alternative, and so under regularity the likelihood ratio statistic L2(0) has an
 asymptotic x2-distribution with degrees of freedom equal to the number of cells N
 minus the number of non-redundant parameters in H minus 1. Denote this quantity
 as DF.

 If we wish to test the null hypothesis x* <. 7r* against the alternative ir* > 4*
 for xr* strictly positive, however, the asymptotic distribution theory is quite
 different. We claim that, under the condition 7r*= 7r=*, L2(7r*) has, asymptotically,
 a mixed x2-distribution, with probability 0.5 equal to 0 and with probability 0.5
 equal to X21). Under this claim, a test with a = 0.05 would reject the null hypothesis
 whenever the test statistic exceeds X 2 )(0.90) =2.70. Inverting this test procedure to
 obtain a lower 95%Wo confidence limit X amounts to finding the value of 7r* for
 which L2(7r*) attains the value 2.70 (see Tables 3 and 4).

 Before proving our claim we note that the results in the previous two paragraphs
 show that the limiting distributions in question are discontinuous in 4X* at 4X* =0.
 Therefore in practice we must be cautious about using XL* when xr* is close to 0
 and the sample size is small. In such cases, we recommend one of two methods:

 (a) use, instead of the critical value 2.70, the critical value of the X2-statistic
 with DF degrees of freedom (the reference distribution for the hypothesis
 that 4r*=0), which is a conservative procedure, or

 (b) simulate the null distribution.

 The distributional claim for 4* > 0 must be argued geometrically. The set of all
 cell probabilities {P } forms an (N- 1)-dimensional simplex. The probability model
 H1, for ir > 0, is a closed set, if H is closed, with an (N- 1)-dimensional interior.
 On the boundary of the null hypothesis (i.e. when 7r*(P) = 7r*), the distribution P
 is on the boundary X of HI4. Under regularity, the boundary io is a locally
 smooth surface of dimension N- 2, and so has a tangent hyperplane within the
 simplex. From here we may follow Self and Liang (1987) (see case 5). Asymptot-
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 ically, using the limiting normal distribution of the observed cell proportions f/n

 implies that with probability 0.5 this observed vector is inside H,* and so
 LI(-o*)=0, and with probability 0.5 it is outside, giving the X')-distribution, under
 the null hypothesis.

 The discontinuity in the limiting distribution arises because the dimension of

 H=Ho does not match that of H, for -r > 0.

 7. MAXIMUM LIKELIHOOD ALGORITHMS

 The EM algorithm of Dempster et al. (1977) can be used to calculate maximum
 likelihood estimates for the mixture models presented here; also see Hartley and
 Hocking (1971) and Little and Rubin (1987). Other algorithms could be used, but
 because all parameters are not identified in general (e.g. values for the unspecified
 multinomial H12) the EM algorithm is attractive because matrix inversion and
 information matrices are not required. We show how this approach can be applied
 with trivial modification of routines that would be used to find maximum likelihood
 estimates of any model H for the observed table.

 For illustration suppose that a two-way contingency table is considered with I
 rows and J columns. Suppose further that H is the hypothesis of row-column
 independence. The complete data array is thus an I x J contingency table whereas
 the incomplete data array is I x J x 2. As earlier, the conditional distribution in the

 first layer is Hl, (where H is posited) whereas in the second it is H2 (unspecified).
 The two layers have proportionate distribution 1 - ir and ir, which for the moment
 is considered fixed. Let Qijk, i= 1, . . ., I, j =1, . . ., J, k= 1, 2, denote the cell
 probabilities in the incomplete array. Only the marginal Qij,+ can be observed, i.e.
 Qij+ =fij/n =pij, the observed proportion in cell (i, j).

 Let Q(?) denote initial estimates such that Q(+? 1 = 1 - ir and Q(+?+2 = T. Initial
 values can be obtained in a variety of ways, but a simple strategy is as follows. For
 the first latent class, set

 Q(J?) = _(7-)P!H) (4
 where p,H) denotes the maximum likelihood estimate of Pij under H. (For H
 equivalent to row-column independence, JH)Jf.+f+jI/n2.) For the second latent
 class, set

 Q()= r(IJ)1 (5)

 The conditions Q(+?+1 = 1 - iX and Q(+?2 = X are satisfied with this choice of starting
 values.

 At cycle s, the E- (expectation) step of the algorithm is defined by

 giJ = pijQgk/Qi7S, (6)
 for all i, j and k. The M- (maximization) step is

 Q(+ 1) = (1-is)Q, (7)
 where Q(S) denotes the maximum likelihood estimate of H1, in cell (i, j) under
 hypothesis H, i.e.

 Q( ) = Qf+)l1 Q(+311 (8)
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 632 RUDAS, CLOGG AND LINDSAY [No. 4,

 where Q+l 1 = g+1/ (1 - 7r) and Q(?s)I 1 =g? j3/ ( 1 - ir). This update pertains to the
 first latent class. For the second latent class (or layer), the update is

 Q (JS2+ 1 ) = '7r ( 9 i!j 2) I/g (+ )+ 2 ) - 9

 Note how the second set of updates is unspecified by a model or hypothesis; no
 constraints are applied in contrast with the case of conventional latent class models.
 Repeated cycling between the E- and M-steps defines the algorithm, with updates
 defined in the usual way.

 The generalization to an arbitrary model H and an arbitrary contingency table

 is straightforward. As before, let h denote a cell in the table. Qijk above is
 replaced by Qhk, for h= 1, . . ., N and k= 1, 2, with Qh+ =fh/ln=Ph observed.
 Pick initial values using the generalization of equation (4), i.e. Qh?)= (1 - )hH

 where phH denotes the maximum likelihood estimate of Ph under model H.
 Formula (5) is replaced by QO) = ir/N. The E-step of equation (6) is replaced
 by g(s)=PhQ()/Q(I for all h and k. The M-step of equation (7) for the first
 latent class is replaced by Qs +)= (1- 7r)Q(s)j where Q(s) is the maximum
 likelihood estimate of Hlh under H. The algorithm used to find maximum likeli-
 hood estimates under H for the observed table can be used directly to find these
 values. The M-step for the second (unrestricted) latent class, following equa-
 tion (9), is Qs+ 1) = (g(s)/g+s)). For ir specified in advance, this algorithm could
 be appended easily to the routine for finding maximum likelihood estimates
 under H.

 The algorithm can be modified to find 7r*. We used a procedure that estimates
 the profile likelihood for increasing values of ir; see the results in Tables 3 and 4.
 The solution is obtained as the smallest possible value of ir for which the likelihood
 ratio statistic L2(ir) = 0. Pick a suitably small value for the trial value, e.g.
 7r*(-)=0.05. Then apply the algorithm defined by equations (4)-(9) with the value
 7r replaced by 7r*(O). If the model is already saturated (L 2= 0), then begin with a
 smaller value of the mixing weight. Otherwise, proceed in increments, with, say,
 7r*(1)=O.10. Reapply the algorithm for fixed ir defined by equations (4)-(9), and
 reiterate to find the smallest possible value with L2 =0.

 We could alternatively use the method of 'binary search' or 'line splitting'
 exploiting the fact that 7j* E [0, 1] and L2(r) = 0 for ir> 7r*. Pick 7*(O) =0. 5,
 say, and if L2 = 0 pick 7r*(1) =0.25; if L2(7r*(l)) > 0 pick 1r*(2) = (r*(O) + T*(1))/2 =
 0.375 (otherwise pick 1r*(2) = (0 + r*(1))/2 = 0.125); continue halving successive trial
 values until convergence to the desired accuracy occurs.

 The computational labour could also be reduced by letting the value of 7V* at loop
 t be

 r*(t) = *(t-1) + at

 where at > 0. After loop t* (with t* > 3, say), pick at.+, by fitting, say, a
 quadratic function to the {a,, a2, ..., at*} using the values {L(o) -L (l)
 L2l) -L(2), . . ., 2 ) -L2t*)}. The procedure continues until the smallest value
 for which L 2=0 is obtained. For each loop t > 1, the starting values for Qijl (see
 equation (4)) can be taken as (1 - 7r*M(t))fl1, where fl is the estimate of H,
 obtained at loop t- 1.

 The computational burden depends on the true value of 7r*, the starting value
 for this parameter and the complexity of the M-step for the first latent class (the
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 calculations required to find maximum likelihood estimates under hypothesis H).
 It is likely that improvements in the algorithm used to find 7r* can be made.

 8. ANALYSIS USING CONVENTIONAL LATENT CLASS MODELS

 Conventional latent class analysis (Goodman, 1974) is closely related to the
 approach suggested above, but it is based on a structured representation of the lack

 of fit of H. In latent class analysis we assume that H applies to both II, and II2
 and that H is the hypothesis of independence. The assumption of within latent class
 independence ('local independence') is not necessary. For example, Formann (1993)
 considered the case where H is the fixed distance model incorporating a special kind
 of row-column interaction in each latent class, and Agresti (1991) considered the
 case where H is the linear-by-linear interaction model. The conventional approach
 based on local independence is considered next along with some of its limitations.

 Applying the conventional approach to the two examples of Section 2 leads to
 the latent class models for two-way contingency tables given in Clogg (1981); also
 see Goodman (1987) and van der Heijden et al. (1992). Let cell h= (i, j), for i= 1,
 ... . I and j= 1, . . ., J, where I and J denote the number of rows and the number
 of columns respectively. Independence within latent class t (t = 1, 2) means that

 11'th = 11tij = lA(i)IX(t)lB(J)tx(t) where, for example, lrA(i)Ix(t) = P(A=iIX=t),
 and A and B refer to the row and column variables respectively. (These conditional
 probabilities should not be confused with the marginal probabilities of the mixing
 variable, 1 - 7r and 7r.) Table 5 gives maximum likelihood estimates of the
 parameters for this model applied to the data in Table 1, and Table 6 gives the
 corresponding entries for the model applied to the data in Table 2.

 The two-class latent structure applied to a two-way table is not identifiable unless
 two restrictions are imposed, and some of the ways that identification can be

 TABLE 5

 Parameter values for the two-class latent structure model applied to the
 data in Table It

 Parameter Latent class t Marginal
 proportion

 t=l t=2

 rA (i) IX(t)
 i=1 0.550 0.000 0.372
 i=2 0.165 0.776 0.363
 i=3 0.197 0.074 0.157
 i=4 0.088 0.150 0.108

 lrB(j)IX(t)
 j=1 0.270 0.000 0.182
 j =2 0.561 0.321 0.483
 j=3 0.139 0.081 0.120
 j=4 0.031 0.598 0.215

 {(1 -X), 7} 0.676 0.324

 tX2=14.899, L2-14.174, D = 0.047, 4 degrees of freedom. Entries in italics
 denote restrictions used to identify * and the other parameters of the model.
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 TABLE 6

 Parameter values for the two-class latent structure model applied to the
 data in Table 2t

 Parameter Latent class t Marginal
 proportion

 t=1 t=2

 WrA(i) IX(t)
 i=1 0.225 0.284 0.242
 i=2 0.373 0.580 0.433
 i=3 0.233 0.135 0.205
 i=4 0.169 0.000 0.121

 rBl (j) IX(t)
 j=1 0.530 0.004 0.378
 j=2 0.358 0.642 0.440
 j=3 0.098 0.258 0.144
 j=4 0.011 0.081 0.031
 j=5 0.004 0.014 0.007

 {(1 -Xr), i} 0.712 0.288

 tX2=19.021, L2-18.537, D = 0.008, 6 degrees of freedom. Entries in italics
 denote restrictions used to identify X and the other parameters in the model;
 compare the restrictions with those used in Table 5.

 achieved are illustrated in these tables. In Table 5, the restrictions used to identify
 parameter values were

 1rA(1)IX(2) = 7TB(1)IX(2) = 0.0,

 i.e. two of the conditional probabilities pertaining to the second latent class were

 set at boundary values. In Table 6, we used the restrictions

 rA(4)jX(2) = 0.0, 7rB(5)jX(1) = *B(1)JX(2)s

 for a total of two restrictions, one a fixed (boundary) restriction and the other an
 equality constraint involving conditional probabilities from both latent classes. The
 magnitude of * is affected by the restrictions imposed (Goodman, 1987); however,
 the fitted values and hence the magnitudes of fit statistics are not affected. In this
 case, the estimate of * is virtually the same for each table (0.32 versus 0.29), so
 this approach does not give a clear signal about the different levels of fit of model
 H in the two tables. In contrast, the unstructured approach based on the saturated
 two-point mixture shows clearly that H is more satisfactory for the second set of
 data. The main complication is that the value of 7'r in the conventional latent class
 model depends on the (possibly arbitrary) restrictions used.

 For many other contingency tables, the two-class latent structure will have
 identifiable parameters, and this structured approach could be applied in these other
 situations without the ambiguity created by underidentification. For example, the
 two-class latent structure has identifiable parameters when more than two variables
 are considered. (The model parameters are identified even for a 2 x 2 x 2 table,
 although the model has 0 degrees of freedom or is 'saturated' in this case; see
 Lazarsfeld and Henry (1968) and Goodman (1974).)
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 Although the two-class latent structure does not fit either set of data when judged

 by conventional criteria (X2-o 95=9.5 and X6,o.95 = 12.6), the magnitudes of the fit
 statistics are reduced dramatically in each case, so much so that a two-point mixture
 of this type is almost congruent with the data in each instance. Whereas conven-
 tional latent class analysis represents an obvious way to develop final models
 for the data, the approach considered earlier provides a more direct method of
 evaluating the goodness of fit.

 9. CONCLUSION AND SOME EXTENSIONS

 Although the approach put forth deals with goodness of fit in the analysis of
 contingency tables, it can be applied in many other settings. To illustrate, consider
 a possible analysis involving the bivariate normal distribution. For an arbitrary
 bivariate normal distribution, suppose that the hypothesis H to be examined is
 independence. Without loss of generality, suppose that (X, Y) follows the bivariate
 normal distribution with mean (0, 0) and var (X) = orj, var ( Y) = o2, coy (X, Y) =
 Por1(J2. Let fxy(x,y) denote the density function. If H is the hypothesis of inde-
 pendence (i.e. p = 0), then the representation corresponding to model (1) is

 fXy(X,Y) = (1-7r*) gX(x) gY(y) + 7r* {f?FQ(X,Y)} (10)

 where fLOF (x, y) denotes the unspecified joint density for lack of fit of the inde-
 pendence model and gx(x) and gy(y) denote arbitrary univariate normal densi-
 ties. It is shown in Appendix A that

 7* = 1 - {(1 - lPI )/(I + IpI )}1/2 (11)
 if I PI < 1. The fraction 7r* outside the model of independence is thus a mono-
 tonically increasing function of the correlation p and hence measures the distance
 from independence. For Ip I -values in the set {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
 0.8, 0.9}, the corresponding .r*-values are {0.00, 0.095, 0.184, 0.266, 0.345, 0.423,
 0.500, 0.580, 0.667, 0.771}; for .r*-values in the set {0.0, 0.1, 0.2, 0.3, 0.4, 0.5,

 0.6, 0.7, 0.8, 0.9}, the corresponding lpl-values are {0.00, 0.105, 0.220, 0.342,
 0.471, 0.600, 0.724, 0.835, 0.923, 0.980}, i.e. a correlation of 0.5 corresponds to
 the fraction 0.423 outside independence, whereas a ir*-value of 0.5 corresponds to

 I p I = 0.6. Note that .7r* can be estimated consistently by substituting the maximum
 likelihood estimator of p in the above expression. The index lr* can be interpreted
 as in the body of the paper (i.e. as the fraction of the population outside the
 independence relationship), which is perhaps a simpler interpretation of the degree
 of non-independence in the bivariate normal distribution than is the magnitude of
 p1. It is also interesting to note that log(l - 7r*) = 2 log ( 1 - IP )/( 1 + Ip), which

 is essentially the same as Fisher's transform of the correlation coefficient. In this
 case, the asymptotic distribution for 7r* is known by virtue of the relationship to
 Fisher's Z, with the sample estimator p replacing the parameter p in the above
 expression. These surprising results for the bivariate normal distribution indicate
 that the mixture-based index for assessing lack of fit can be easily and usefully
 extended beyond the contingency table setting. For a two-way contingency table that
 represents a discretization of continuous variables, this analysis also provides an
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 interpretation of lr* in terms of the correlation in an underlying bivariate normal
 model (see Goodman (1985)).

 We conclude with some issues that need to be examined further.

 (a) Although ** is consistent, it will tend to be biased upwards in finite samples
 if -x* is relatively small. To see this, note that, even if H holds true so that
 7r =0, 0** will be greater than 0 for finite n with probability approaching
 1. The bias will be inconsequential for very large samples, but a detailed
 investigation would be appropriate.

 (b) A measure of precision for ** ought also to be considered. Clearly, calcula-
 tions of the standard error derived in the usual way (e.g. from assessing the
 curvature of the log-likelihood at the maximum) are not relevant since the
 profile log-likelihood is flat for -r > "*. We note that the lower confidence
 limit *L provides inferential information that is independent of the bias in
 j** and, via **-*L*, gives an indication of the magnitude of the error in
 7r.

 (c) The possible effect of sampling zeros in f ought to be investigated further.
 If fh=0 for cell h, for example, then 111h =I2h = 0 and the value of **
 might be affected by this (in small sample situations). The effect of sampling
 zeros is not obvious, however. Consider the 2 x 2 table {a = n, b = c = d =0 },
 where n is small. This table satisfies row-column independence, with two
 zero marginals and three sampling zeros. Here j* = 0 and the estimate of
 Hl, is equal to the observed distribution; there is no inflation in the
 estimator of -x* due to sampling zeros in this case. The effect of sampling
 zeros will depend on the structure of the data as well as the suitability of
 the model H for the data. In cases where H is row-column independence,
 a sampling zero will make the estimate of the row or the column total in
 Hl, equal to 0. And, in general, this will tend to increase ** by an amount
 that is directly related to the smaller of the observed row marginal propor-
 tion and the observed column marginal proportion pertaining to the cell with
 a sampling zero. If both of these marginal probabilities are relatively large,
 then the sampling zero is an indication of a possibly extreme departure
 from row-column independence, and we would expect the value of *t * to
 be relatively large as a consequence. Other approaches that ought to be
 investigated include replacing sampling zeros by small positive flattening
 constants or redefining model H by regarding the sampling zeros as struc-
 tural zeros.

 (d) The approach put forth here provides implicitly a new definition of residual
 analysis that ought to be explored further. Note that cell residuals under
 model H are summarized in 112. The non-zero elements of f2 provide
 information about sources of lack of fit that are related to but different from
 the information provided in the ordinary residuals obtained by fitting H
 directly to f.

 (e) Finally, the approach ought to be extended to a wider class of models, such
 as the class of generalized linear models.

 We believe that our mixture approach and the index ir * derived from it deserve
 to be considered as a supplement to or as a replacement for some of the other
 popular published indices of fit.
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 APPENDIX A: INDEX 7r* AS MEASURE OF CORRELATION IN BIVARIATE

 NORMAL DISTRIBUTION

 The conditions are those provided at the beginning of Section 9. Without loss of
 generality, assume that gx corresponds to an N(0, ao2/A1) density and that gy corresponds
 to an N(0, o22/A2) density, with A1 = A + E, A2 = A - E, A1 > 0 and A2 > 0. (gx and gy do not
 refer to the corresponding marginal densities derived from fxy.) Because fLOF(X, y) > 0 and
 r* >0 , equation (10) is equivalent to

 fxy(X, Y) > cgx(x) gy(y) (12)

 for all x and y. We seek the largest constant c with 0 < c < 1 (where c = 1 - 7r*) such that
 inequality (12) holds. Hence we define

 c = infx,y {fx(x, y)/gx(x) gy(y)}. (13)

 Now consider the scale change x, =x/al, x2 =Y/a2, with Jacobian a,a2, applied to both
 sides of inequality (12). After simplification we obtain

 (I _P 2) -1/2 exp -QJ/2) > _(A -2)1/2 exp -QI/2), (14)
 making use of the fact that A1A2=A2-E2, where QJ= (X?2+x22-2pxlx2)/(I -P2) and Q,=
 Alxl +A2x22. Using definition (13) we can therefore write

 c = (A2 - C2) -1/2(I1 _ p2) -1/2 infXlX2 {exp( -Q/2)} (15)

 where Q = QJ - Q, = (X2 +X2 -x2px x2)/(1 _p2) _ A,x? - A2x2, a quadratic form in
 xl and x2. Q can be written as x Ax with A= {aij} where al = (1 - p) - (A+ e), a22
 (1 _ p2) -1 _ (A - e) and a12 = a2l = _p/(l p)2*

 If A has any positive eigenvalues, then by choosing x proportional to an eigenvector
 associated with a positive eigenvalue we can make the term exp( - xTAx/2) as small as we
 like, so A must be negative semidefinite ( - A/2 must be positive semidefinite) if c is to be
 greater than 0. If A is negative semidefinite, then - xTAx/2 takes on its minimal value, 0,
 at x=0, so that

 c= (A2-E2)-1/2(1-p2)-1/2 (16)

 Thus we need to choose A and e (or A1 and A2) to maximize (A2 - E2)-1/2 subject to the
 condition that A is negative semidefinite.

 Given (A, e), the eigenvalues of A are

 (1 _p2) 1 _ A + IC2+p2/( - p2)211/2
 Setting the larger eigenvalue to 0, we have
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 A = {E2+p2/(1 -p2)2}11/2 + (1 _ p2) -1. (17)

 We wish to minimize A2 - E2, which for the above A is

 A2 - 2 =(I _p2) -2 + p2(l _p2) -2 + 2(l _p2) -1 {E2+p2( 1 2) -211/2.

 This is minimized at E=0, and substituting in equation (17) with E=0 we obtain A =

 IP I/ ( I _p2) + 1/ (1 _ p2) = 1/ ( 1 - I P I ). This gives the result in equation (11) on sub-
 stitution in equation (16).
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