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 Several methods have been proposed to detect differential item functioning
 (DIF), an item response pattern in which members of different demographic
 groups have different conditional probabilities of answering a test item
 correctly, given the same level of ability. In this article, the mixture index
 of fit, proposed by Rudas, Clogg, and Lindsay (1994), is used to estimate
 the fraction of the population for which DIF occurs, and this approach is
 compared to the Mantel-Haenszel (Mantel & Haenszel, 1959) test of DIF
 developed by Holland (1985; see Holland & Thayer, 1988). The proposed
 estimation procedure, which is noniterative, can provide information about
 which portions of the item response data appear to be contributing to DIE

 The absence of differential item functioning (DIF) is regarded as an
 important aspect of test fairness by most educational researchers. The exten-
 sive literature on the detection and measurement of DIF is reviewed in Holland

 and Wainer (1993) and Camilli and Shepard (1994).
 In this article we propose to assess the importance of DIF by estimating

 the largest possible fraction of the population in which DIF does not occur,
 or, equivalently, the smallest possible portion of the population in which DIF
 may occur. This approach is based on latent class (see Clogg, 1981) or
 mixture concepts and was proposed by Rudas, Clogg, and Lindsay (1994)
 in the general context of assessing the fit of an arbitrary model to a contin-
 gency table.

 The authors are indebted to Nicholas T. Longford, Ming-mei Wang, two anonymous
 referees, and the associate editor for comments on an earlier version of this article,
 to Dorothy T. Thayer for computing summary statistics for the examples, and to the
 College Board's Advanced Placement Program? at Educational Testing Service for
 providing data from the AP Physics B examination.

 This research was conducted while both authors were in the Research Statistics
 Group at Educational Testing Service, the first as a visiting scholar and the second
 as a principal research scientist. The first author's work was also supported in part
 by Grant No. OTKA T-016032 from the Hungarian National Science Foundation.
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 Rudas and Zwick

 Let H be any model or hypothesis for a contingency table. Then any
 distribution P can be represented as

 P = (1 - n)1 + Ir, (1)

 where ( is a distribution in H, Ir is an arbitrary distribution, and 0 - 5rr -
 1. The above representation is not unique. The mixture index of fit -rr* is
 defined as the minimum possible value of rr,

 -rr* = inf {7r: P = (1 - 7r)4 + ITP,  E H),

 and it is the smallest possible fraction of the population outside the model
 of interest, H. Rudas et al. (1994) described a general method of obtaining
 maximum likelihood estimates of rr* and of constructing confidence intervals.
 The nonrestricted distribution, I, describes residuals, though not in the stan-
 dard sense, and IT* is the total weight of these residuals. Ordinarily, residuals
 are defined with respect to a model that is assumed to hold in the entire
 population. By contrast, the residuals in this approach are defined in the
 context of representation (1), which is always true. The Ai residuals describe
 the distribution in the part of the population in which hypothesis H is not
 true. Various interpretations of Ai are discussed in Clogg, Rudas, and Xi
 (1995). In the present article, the residuals will be used to identify parts of
 the population in which evidence of DIF exists.
 An extension of the approach of Rudas et al. (1994) will be used to compare

 the fits of nested models using a measure of the relative fit of a model against
 a restricted alternative (see also Clogg, Rudas, & Xi, 1995). This will be
 applied to the no-DIF and uniform-DIF (see Mellenbergh, 1982; Holland,
 1985) hypotheses of the Mantel-Haenszel (MH) type.
 Application of the procedure proposed in this article produces an estimate

 of the minimum proportion of the population that would have to be removed
 in order to make the rest of the population free from DIF, as well as information

 about the specific portion of the population that is the apparent source of
 DIF in the above sense. This type of result may be more interpretable than
 conventional DIF statistics and may provide information that can be used to
 modify test items.

 The article is organized as follows. The next section formulates the hypothe-
 ses of no DIF and uniform DIF as MH-type hypotheses for a three-dimensional
 contingency table. Then simple methods for maximum likelihood (ML) esti-
 mation of Ir* under these hypotheses will be described, along with a method
 for testing the hypothesis that the fraction of the population that is free from
 DIF is greater than a specified value. The conclusions that can be drawn
 from inspecting the "fr* values and AiP residuals will also be discussed. The
 next section will present numerical results for two data sets-a simulated
 data set and a set of examinee responses to the 1993 Advanced Placement
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 Estimating the Importance of DIF

 Physics B Exam. The last section discusses relative advantages and disadvan-
 tages of using the mixture index of fit Tr* in this context.

 The Hypothesis of No DIF

 Let A and B be two groups of respondents, often labeled as the focal and
 reference groups. The focal group is the group of primary interest, and the
 reference group serves as a basis for comparison.

 The analysis of DIF can be conducted by comparing the reference and
 focal group odds of answering an item correctly, conditional on a measure
 of ability, such as a test score. Under the hypothesis of no DIF, group
 membership and item response (correct or incorrect) are conditionally inde-
 pendent, given ability. The following table gives the notation for the condi-
 tional probabilities at level j of the matching test score:

 Response
 Correct Incorrect

 A PACj PAIj
 Group

 B PBCj PBIj

 The hypothesis of no DIF is

 H (no DIF): PACPI= = 1 for j = 1,.... J. (2)
 PAIjPBCj

 Holland (1985) suggested the use of the Mantel-Haenszel procedure for
 testing the hypothesis of no DIF (see also Holland & Thayer, 1988). The
 Mantel and Haenszel (1959) chi-square test approximates the uniformly most
 powerful unbiased test of the null hypothesis against the alternative that the
 conditional odds ratios (see Rudas & Leimer, 1992) in (2) are all equal to a
 common value other than one (Holland & Thayer, 1988), which is the hypothe-
 sis of uniform DIF:

 H (uniform DIF): PACjPBIj = O ( 1) forj = 1,..., J. (3)
 PAIjPBCj

 The amount of DIF, as measured by the conditional odds ratio, is assumed
 to be constant over all levels of the matching variable.

 When the sample size of the focal group is much smaller than the sample
 size of the reference group, the method for fitting the same log-linear model
 to two groups of very different sizes described in Rudas (1991) may be
 applied instead of testing (2) against (3).

 Holland and Thayer (1988) discussed the relative advantages of testing
 (2) against (3) over other methods of testing for the presence of DIF (see

 33
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 also Zwick, 1990). They proposed the use of a transformation of the Mantel
 and Haenszel (1959) odds ratio estimator (i.e., the estimator under (3)) to
 measure the amount of DIF. In practice, a combination of the MH chi-square
 and odds ratio estimate is often used to assess the degree of DIF in an item
 (see Zieky, 1993).

 In the next section we provide an alternative way of assessing the amount
 of DIF by estimating the smallest fractions of the population that have the
 property that their complements can be described by hypotheses (2) and (3),
 respectively. The comparison of these two fractions can be used as a measure
 of the relative fits of hypotheses (2) and (3).

 The hypotheses considered in this section can be extended to items with
 more than two possible scores, such as partial credit items or items that are
 scored on an ordinal scale. Within each level of the matching variable, the
 data can be represented as a 2 x L table, where L is the number of options.
 In this case, the association structure can be described by considering either
 the conditional means of the two groups (e.g., see Zwick, Donoghue, &
 Grima, 1993b; Zwick & Thayer, 1996) or the set of conditional odds ratios
 pertaining to these 2 x L tables (Zwick, Donoghue, & Grima, 1993a). These
 can be the odds ratios based on neighboring columns (see Goodman, 1979)
 or on the reference cell approach (see Rudas, 1991). The methodology dis-
 cussed in the next section can be applied in these cases as well, but iterative
 procedures are needed for fitting the models of no DIF and uniform DIF. A
 fourth, unobserved variable is introduced, showing whether or not an observa-
 tion came from the part of the population in which the hypothesis holds.
 Then the EM algorithm (Dempster, Laird, & Rubin, 1977) can be applied to
 fit the mixture in (1) with various trial values of rr. The value of fr* is the
 smallest value with which perfect fit can be achieved. This procedure is
 described in Rudas et al. (1994) in a general form and will not be discussed
 here. On the other hand, when the responses are classified only as correct
 or incorrect, the ML estimate for rr* has a closed form for the hypothesis
 of no DIF and can be obtained as the result of a finite-step maximization
 procedure for the hypothesis of uniform DIE These procedures are considered
 in the next section.

 Estimating the Fraction of Population Outside of the Hypotheses of
 No DIF and Uniform DIF

 The goal of the wr* approach, sketched briefly in the introduction, is to
 consider the observed table of frequencies and take away the smallest possible
 fraction of observations, so that what remains corresponds to the hypothesis
 of interest exactly. Note that the exact correspondence to the hypothesis
 which results does not imply that the procedure overfits the model; rather,
 it is a consequence of the fact that representation (1) always holds true with
 an appropriate value of rr. The ratio of the number of observations removed
 to the sample size is the ML estimate of the mixture index of fit rr*, and
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 Estimating the Importance of DIF

 the distribution of the portion of observations that was taken away is the ML
 estimate of T, where T is the distribution in that part of the population in
 which the hypothesis of interest does not hold (Rudas et al., 1994).

 In the case of model (2), this leads to the following algorithm. For every
 level j of the matching variable, consider the table of observed frequencies
 and suppose that none of the entries is equal to zero. If the observed conditional
 odds ratio

 SfACjfBIj
 fAIjfBCj

 is greater than a = 1, then only the smaller of fACj and fBj needs to be
 reduced. The smaller of these, gsmj = min(fAcj, fBIj), must be reduced by

 dj = gsmj(1 - xlt/j).

 When &j is less than a = 1, only the smaller of fATj and fBcj needs to be
 reduced. The smaller of these, hsmj = min(fAIj, fBCj), must be reduced by

 dj = hsmj(1 - IA/o).

 See Clogg, Rudas, and Xi (1995) for related discussion. The ML estimate
 of 'rr* for model (2) can be obtained as

 fr*(no DIF) = (1/N)  dj,

 where N is the total sample size.
 WhenfAcj = fBj orfA i = fBCj, either one of the frequencies can be reduced.

 The cell of the conditional table in which the frequency is reduced is not

 uniquely defined, but the amount of decrease, and therefore the value of r*,
 are uniquely defined.

 To design a simple algorithm yielding fr* (uniform DIF), consider (3) as
 the union of infinitely many hypotheses:

 H (uniform DIF) = U H, = U P: PACjPBIj
 oaR oER PAIjPBCi atl aZI

 For a o 13, H, and Hp are disjoint. Therefore, one may obtain ^r* for (3)
 by first fixing a, finding fr*(H,) = ft*(ao), and then taking the infimum over
 the possible values of a. Note that H, is a prescribed conditional interaction
 model in the three-way table (see Rudas, 1991).

 35
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 For arbitrary but fixed or, the algorithm to find fr*(ao) is exactly like the
 one described above for hypothesis (2). This yields a fr*(a) value, and the
 ML estimate under hypothesis (3) can be obtained as

 fr*(uniform DIF) = inf frt*(a). (4)
 a0l

 There is, however, no need to minimize over all positive ota 1 values. It
 can be assumed without loss of generality that the ability levels are indexed

 by j in ascending order, that is, & j &j+l, for every j. If, for some j, &j <
 tj+l and 6 - a !ot -E+, then

 N'fr*(a) = I hsmi(1 - &i/a) + gmi(1 - o/.i).
 isj i>j+ 1

 In the range &j < Ka < 6+1 the first derivative of the above function is
 positive, and the second derivative is negative, which implies that in the
 range &< < a < Il the function ^r*(a) is convex. Therefore, in the range
 &j - - &j+ the function r*(oa) has its minimum either for a = ot or for
 Oa = j+,l. Also, the minimum in (4) cannot occur for an oa value outside of
 the range of the observed &j values, because for a < al, li*(ac) > fr7*(a,),
 and for ax > aj, fr*(a) > 7r*(a j). Therefore, it suffices to inspect only the
 values of f*(ac) at the observed ability levels.

 f*(uniform DIF) = min r*(a).

 Note that the estimates for 7r* do not depend on the sample size as do
 the chi-square values for the hypotheses of independence or conditional
 independence. If two samples have the same relative frequencies, the estimates
 of the mixture index of fit 7rr* are the same.

 The above algorithms assume that there are no zero observed frequencies
 in the data. If, for a given level of the matching variable, zeros occur in
 both cells of the same column (i.e., either everybody in both groups, or
 nobody in either group, could answer the item correctly), this can be regarded
 as inconsistent with DIF; these 2 x 2 tables may be omitted from the
 analysis. Two other ways to eliminate zero cells which may be appropriate
 in some instances are combining the data across two or more levels of the
 matching variables (Donoghue & Allen, 1993) and smoothing the data by
 using a suitable prior or by adding small constants to the empty cells
 (Agresti, 1990).

 Having estimated 7r*(no DIF) and 7r*(uniform DIF), several inferential
 procedures are feasible. These parameters can be interpreted as the smallest
 possible fractions of the population that cannot be described by the model.
 The values of 7r* can be used as measures of the misfit of the respective
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 Estimating the Importance of DIF

 models, that is, as measures of the amount of DIF. Also, these measures can
 be compared across items.

 The pattern of the residual --that is, the locations and relative sizes
 of the amounts that were removed from the conditional tables-provide
 information about where (in terms of ability level, group membership, and
 item response) DIF occurs.

 If the hypothesis of uniform DIF is extended to include the case of a =

 1, then hypothesis (2) is nested in hypothesis (3) and 7fr*(no DIF) ? Tr*(uni-
 form DIF). The difference between these two values can be used as a measure
 of how much better (3) fits the data than (2) does-that is, what fraction of
 the population is lost by restricting the value of the common conditional
 odds ratio to one.

 The above inferential procedures are illustrated in the next section.
 In some cases, testing the hypothesis that the proportion of the population

 in which DIF is present is less than a specific value, say, W, may be of
 interest. This can be done by fitting the model

 P = (1 - -)4 + 9, e H(no DIF)

 to the data. To fit this model, standard latent class techniques can be used,
 which involve defining a fourth, unobserved variable that identifies whether
 an observation came from the distribution D or from the distribution A, and

 applying the EM algorithm (Dempster et al., 1977). Details of this procedure
 and properties of the resulting chi-square statistic are described in Rudas et
 al. (1994).

 Examples

 The first example is based on simulated data from a previous study (Zwick,
 Thayer, & Wingersky, 1994). The data consist of the item responses of 500
 reference group (A) and 500 focal group (B) members. The reference group
 ability distribution was standard normal (N(0, 1)), while the focal group
 distribution was N(0.5, 1). The item responses were generated using a three-
 parameter logistic model (Birnbaum, 1968).

 l-c
 P(O)c= c+ (5)

 1 + exp(-1.7a(O - b))' (5)

 where P(O) is the probability of answering the item correctly for an examinee
 with ability 0. The item used in the example had a lower asymptote of c =
 0.15 and a discrimination of a = 1 in both groups. The reference group
 difficulty was bR = 0, and the focal group difficulty was bF = 0.35. The
 item response functions for the reference and focal groups differed only in
 location; conditional on ability, the item was more difficult for the focal
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 group. The measure of ability that served as a matching variable was the
 number-correct score on a 75-item test that included the example item.

 For this analysis, the data can be summarized in a 76 x 2 x 2 contingency
 table. The sufficient statistics for 7r* under (2) or (3) are the 76 (j = 0,...,
 75) observed conditional odds ratios (&j) and the frequencies gsmi and hsmj.

 Of the 304 observed frequencies, 103 were equal to zero; that is, over one

 third of the cells were empty. Moreover, of the 76 conditional 2 x 2 tables,
 45 contained at least one zero frequency; therefore, more than half of the 76
 conditional odds ratios were impossible to estimate from the data or yielded
 estimated values of zero. Eliminating the 2 X 2 tables that contained empty
 cells would have required the deletion of 351 observations-over one third
 of the sample-which would not have been desirable.

 To overcome the problem of empty cells, we replaced the zero frequencies
 with small positive values. To assess the effect of this approach, the main
 analysis was carried out with various choices of the flattening (or smoothing)
 values. The values were either constant (0.0001, 0.001, 0.01, 0.1, or 0.5) or
 uniformly distributed on an interval starting at 0 and with the same expected
 values as above.

 The estimates of 7r* for the hypotheses of no DIF and uniform DIF, using
 the above flattening values, are reported in Table 1. The main finding is that
 for every choice of the flattening values, f r*(no DIF) and ir*(uniform DIF)
 are very close to each other. The numerical results in Table 1 show that
 increases in the flattening values result in decreases in the estimates for 7r*
 (for the flattening values included). Estimates for 7r* under both hypotheses
 have their minima near the flattening constant 0.9, where the estimates are
 0.06064 and 0.06057, respectively. Taking into account, however, that several
 observed frequencies were equal to 0 or 1, it appears that 0.9 is too big to
 be used as a flattening constant.

 TABLE 1

 Maximum likelihood estimates of 7r* for the hypotheses of no DIF and uniform
 DIF using different flattening values for the data generated by (5)

 Flattening value Tr*(no DIF) Tr*(uniform DIF)
 0.0001 0.07338 0.07274
 0.001 0.07335 0.07272
 0.01 0.07309 0.07243
 0.1 0.07039 0.06953
 0.5 0.06387 0.06339
 U(0, 0.0002) 0.07339 0.07275
 U(0, 0.002) 0.07338 0.07274
 U(0, 0.02) 0.07332 0.07265
 U(0, 0.2) 0.07252 0.07170
 U(0, 1) 0.07071 0.06928
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 The results in Table 1 show that we estimate that about 7% of the population
 needs to be disregarded in order to remove DIF, or that about 93% of the
 population can be described by the model of no DIF. The actual choice of
 the flattening constant has very little effect on this result. Rudas et al. (1994)

 described a method of obtaining lower confidence bounds for rr*. With this
 data set, using the flattening value of 0.1, one obtains the 95% lower confi-
 dence bound of 0.055 (rounded value) for ir*(no DIF). As the resulting 95%
 confidence interval does not contain zero, our procedure detects the DIF
 present in the original data-generating mechanism.

 The difference

 *rr(no DIF) - rr*(uniform DIF) (6)

 can be used as a measure of the gain in fit due to using the model of uniform
 DIF over the model of no DIF. This quantity compares the estimates of the
 fractions of the population that cannot be described by the respective models.
 Although developing a formal test for the significance of this quantity is
 outside of the scope of the present article, the results in Table I suggest that
 there is no substantial gain in using the model of uniform DIF to describe
 the data, compared to using the model of no DIF; in both cases we estimate
 that about 7% of the entire population (reference plus focal) cannot be
 described by the model.

 In what follows, results using the flattening constant 0.1 will be described
 to illustrate the conclusions that can be reached using the -rr* approach. The
 following table shows the 2 x 2 marginal of T for the hypothesis of no DIF
 multiplied by the sample size. These are the observations that have to be
 removed in order to achieve conditional independence.

 Response
 Correct Incorrect

 Reference 7.85 12.57

 Group
 Focal 14.14 35.82

 These may be compared with the corresponding marginal of the observed data:

 Response
 Correct Incorrect

 Reference 279 221

 Group
 Focal 326 174

 This shows that we estimate over 20% (35.82/174) of focal group members
 who answered the item incorrectly to be outside the model of no DIF, while
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 in the other categories the fractions are much smaller. The observations that
 were removed from among focal group members who answered the item
 incorrectly account for more than 50% (35.82/70.38) of the total number of
 observations that must be removed. This means that although the model of
 uniform DIF does not describe our data substantially better than the model
 of no DIF, the model of no DIF fails to account for some focal group members
 who did not answer correctly. This indicates the presence of some degree of
 DIF in favor of the reference group, as in the original mechanism of data
 generation. Note that the estimate of T under the hypothesis of uniform DIF
 is very similar to the estimate under the hypothesis of no DIF and has the
 same interpretation as above. That is, both the magnitude of the misfit (as
 measured by 7r*) and the patterns of residuals are similar for the two
 hypotheses.

 Under the hypothesis of uniform DIF, the value of the conditional odds
 ratio for which the minimum occurred is &(uniform DIF) = 1.09375. There
 are only two types of conditional tables in which the patterns of decreases
 in cell counts are different for the no-DIF and uniform-DIF hypotheses: (a)
 tables in which one of the hypotheses holds exactly and (b) tables in which
 &j is between at = 1 and f&(uniform DIF).

 The value of &(uniform DIF) is equal to the odds ratio that was observed
 among those who had 44 correct answers. An interesting interpretation of
 this value can be obtained by noting that of the 1,000 observations, 473
 were in conditional tables where the estimated conditional odds ratio (after
 replacing each zero by 0.1) was less than 1.09375, 24 were in the conditional
 table where the estimated conditional odds ratio was exactly 1.09375, and
 503 came from tables where the estimated conditional odds ratio was greater

 than 1.09375. This means that the wr* approach led to a median-type estimate
 of the common conditional odds ratio.

 Plotting N against the number-correct score may be informative in revealing
 the pattern of occurrence of DIF, but, because of the small value of rr*, we
 did not apply this technique here. Note that for examinees with at least 47
 correct answers, only the frequencies of the cells with incorrect responses
 were reduced (under both hypotheses).

 The conventional MH DIF analysis involves calculation of the MH chi-
 square and the index

 MH D-DIF = -2.35(ln &MH),

 a transformation of the MH odds ratio estimate, &MH, to the delta metric of
 item difficulty (Holland & Thayer, 1988).

 For the (unsmoothed) example data, the MH chi-square statistic is 0.30,
 O&MH = 1.11, and MH D-DIF is -0.24, with a standard error of 0.38 (see
 Phillips & Holland, 1987). Since the chi-square statistic is close to zero and
 MH D-DIF is close to its null value of zero, the conclusion from the MH
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 analysis is that there is no reason to reject the hypothesis of no DIF. That
 is, the MH method fails to detect the DIF in the population, in contrast with
 the 7r* approach.

 The data for the second example were taken from the 1993 Advanced
 Placement Physics B Exam. There were 70 multiple-choice items, and the
 goal of the analysis was to detect male-female DIF. There were data available
 on 9,104 male (reference group) and 4,118 female (focal group) examinees.
 The matching variable was the number-correct score on the 70 items. Results
 for only the first 10 items will be reported here. Zero observed frequencies
 were replaced by 0.1, as in the previous analysis.

 The results are summarized in Table 2. For the 10 items considered, the

 fi* values for the no-DIF hypothesis are between 0.02 and 0.06, and for the
 uniform-DIF hypothesis between 0.02 and 0.03; that is, we estimate that for
 each item, DIF is absent in 94-98% of the population, and a uniform DIF
 model adequately characterizes 97-98% of the population. The values of (6),
 showing the gain in fit due to assuming uniform DIF instead of no DIF, are
 between 0.00 and 0.03. For Items 1, 2, 5, 9, and 10, the uniform-DIF hypothe-
 sis does not fit better, as measured by the Tr* index of fit, than the no-DIF
 hypothesis. The gain is the highest for Items 3 and 7, namely, 3%. Whether
 this gain should be considered substantial or not may depend on several
 factors. One possible approach is to consider the ratio ftr(uniform DIF)/fir(no
 DIF). This shows that for Items 3 and 7, the fraction of the population not
 described is reduced by 50% as one moves from the no-DIF hypothesis to
 the uniform-DIF hypothesis.

 Except for Items 3, 8, and 10, the &1(uniform DIF) values suggest superior
 item performance for males conditional on number-correct score. The magni-
 tude of DIF is greatest (above 2) for Item 4. Assuming a uniform DIF of
 this magnitude leads to the description of an estimated 98% of the total

 TABLE 2

 Maximum likelihood estimates of 7r.*(no DIF), 7r*(uniform DIF), and ct(uniform
 DIF) for the first 10 items of the 1993 Advanced Placement Physics B Exam

 Item fr*(no DIF) Ifr*(uniform DIF) &(uniform DIF)

 1 0.03 0.03 1.03
 2 0.03 0.03 1.08
 3 0.05 0.02 0.63
 4 0.04 0.02 2.08
 5 0.03 0.03 1.24
 6 0.03 0.02 1.28
 7 0.06 0.03 1.62
 8 0.04 0.03 0.87
 9 0.02 0.02 1.15
 10 0.02 0.02 0.92
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 population. No other assumed value of the common conditional odds ratio
 could lead to the description of a greater fraction of the population.

 There are several further analyses that are facilitated by the if* approach.
 For example, in the case of Item 4, DIF appears to be concentrated at lower
 ability levels, and, consequently, examinees at higher ability levels are affected
 by DIF to a lesser degree. It was found that 81% of the individuals who
 could not be described by the no-DIF hypothesis had number-correct scores
 below the median. Ninety-five percent of those who could not be described
 by the no-DIF hypothesis had number correct-scores below the 75th percen-
 tile. The corresponding figures for Item 10 are 79% and 91%, respectively,
 which again shows a concentration of DIF at lower ability levels. All 10
 items showed the same effect to some degree.

 Results of the MH analysis are reported in Table 3. Items 3 and 8 had
 odds ratios less than one, indicating that females tended to perform better,
 conditional on number-correct score, whereas the other items showed better

 conditional item performance for males. Using Educational Testing Service
 criteria (Zieky, 1993), only Item 4 shows substantial DIF against females.

 The analyses based on the wr* approach and on the MH method agree
 considerably as to the estimates of the common conditional odds ratios for
 all 10 items considered. In the case of Item 10, the two analyses disagree
 concerning the direction of DIF; however, the estimated common conditional

 odds ratios are close to one in both analyses, and in the MH approach the
 result is not significant. However, the strength or importance of DIF is
 conceptualized in very different ways in the two approaches: the magnitude
 and statistical significance of the odds ratio estimate in the MH analysis
 versus the size of the fraction of the population that cannot be described by
 the hypothesis of interest in the fw* approach.

 TABLE 3

 Results of the Mantel-Haenszel analysis for the first 10 items of the 1993 Advanced
 Placement Physics B Exam

 Standard error

 Item MH odds ratio MH D-DIF of MH D-DIF

 1 1.07 -0.16 0.11
 2 1.10 -0.23 0.10
 3 0.69 0.89 0.11
 4 2.00 -1.63 0.13
 5 1.02 -0.05 0.10
 6 1.16 -0.35 0.10
 7 1.49 -0.94 0.10
 8 0.87 0.32 0.10
 9 1.26 -0.54 0.12
 10 1.08 -0.19 0.12
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 Discussion

 The ir* approach offers a new way to assess the importance of DIF in
 educational testing. The importance of DIF, in this approach, is influenced
 by the size of the subgroup of the population in which DIF may be present,
 as well as the magnitude of DIF for this subpopulation. In this sense, the
 results of the war* method, when applied to the problem of DIF, will depend
 to some degree on the distribution of the observations in the reference and
 focal groups, and the distribution of the matching variable. Note that the MH
 odds ratios are also affected by the distribution of the examinees. The MH
 odds ratio estimate can be expressed as a weighted sum of the &i values,
 where the weights are a function of the observed within-level cell frequencies
 (Holland & Thayer, 1988). In addition, the examinee ability distribution can
 have unintended effects on the MH odds ratios (Zwick, 1990).

 The ar* approach gives results with a straightforward interpretation and
 may provide diagnostic information concerning the specific parts of the
 population where DIF is evident. By inspecting l, it might be found, for
 example, that the lack of fit of the no-DIF hypothesis tended to occur among
 examinees who chose a particular incorrect response. This type of information
 could be helpful in pinpointing the source of DIF. Or it might be found that
 lack of fit of the no-DIF hypothesis occurred only among examinees in
 the extremes of the test score distribution. This might be viewed as less
 consequential than DIF occurring near the mean of the distribution.

 Finally, it should be mentioned that recent research (Chang, Mazzeo, &
 Roussos, 1995; Roussos & Stout, 1996) has shown that under some circum-
 stances, the SIBTEST method of DIF detection (Shealy & Stout, 1993)
 maintains better Type I error control than MH-type methods. The 'r* approach
 has no intrinsic connection to the MH method and could be applied in
 conjunction with SIBTEST or with other DIF detection methods, as well.
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