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 It was recently demonstrated that performing median splits on both of two
 predictor variables could sometimes result in spurious statistical signifi-
 cance instead of lower power Not only is the conventional wisdom that
 dichotomization always lowers power incorrect, but the current article
 further demonstrates that inflation of apparent effects can also occur in
 certain cases where only one of two predictor variables is dichotomized.
 In addition, we show that previously published formulas claiming that
 correlations are necessarily reduced by bivariate dichotomization are incor-
 rect. While the magnitude of the difference between the correct and incorrect
 formulas is not great for small or moderate correlations, it is important to
 correct the misunderstanding of partial correlations that led to the error
 in the previous derivations. This is done by considering the relationship
 between partial correlation and conditional independence in the context of
 dichotomized predictor variables.

 A common design in behavioral science research, particularly research
 focusing on individual differences, involves dichotomizing two continuous
 variables in order to study their effects on a third variable. Although methodol-
 ogists have long cautioned against the difficulties that can arise from artifi-
 cially dichotomizing continuous variables (e.g., Humphreys & Fleishman,
 1974), there are plausible explanations for why researchers continue to be
 attracted to such procedures. One such explanation is that using "median
 splits" may seem to simplify the data analysis for a given study. More
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 Dichotomization

 importantly, dichotomization seems to confer a conceptual benefit in that it
 permits one to talk about categories or types instead of continua. As an
 example, "Type A personality" has become standard nomenclature in certain
 areas, some of which have relevance to education (e.g.,' Tang, 1988), despite
 the fact that the label may be applied to individuals obtaining any of the
 wide range of values on the Jenkins Activity Survey observed above the
 median in a particular study.

 There are, however, strong methodological arguments against dichotomiz-
 ing. Most well known is the fact that artificially dichotomizing a single
 predictor variable typically results in an underestimation of the magnitude
 of bivariate relationships and a lowering of statistical power for detecting
 true effects (Cohen, 1978; Humphreys & Fleishman, 1974; Maxwell, Dela-
 ney, & Dill, 1984). As a result, some researchers may have reasoned that
 they were being statistically conservative by dichotomizing: If an effect is
 obtained with a dichotomized variable, then the finding must be robust because

 it was achieved despite the low power. However, Maxwell and Delaney
 (1993) recently showed that with multiple predictors a somewhat counterintu-
 itive result can occur. Specifically, they present formulas showing that simulta-
 neously dichotomizing two normally distributed predictor variables can
 dramatically increase the probability of Type I errors in the tests of the
 predictors' effects.

 Maxwell and Delaney (1993) dealt only with the situation where both of
 two predictor variables are dichotomized, and unfortunately readers may
 have gotten the impression that these effects are restricted to that situation.
 Unfortunately as well, some previously published results on the effects of
 joint dichotomization are incorrect. A major purpose of the current article is
 to elucidate the true effects of joint dichotomization of two variables, and to
 examine the implications of the correct formulation for generalizations of
 Maxwell and Delaney's results.

 We begin by deriving correct formulas for the attenuation of correlations

 that results from dichotomization. We next make comparisons between the
 correct results and those previously published. After noting that dichotomiza-
 tion involves a quantifiable loss of information, we consider the implications
 of our derivations for extensions of Maxwell and Delaney's (1993) results
 under various combinations of dichotomized and continuous variables.

 Although our focus is on dichotomizations resulting from median splits, we
 also briefly consider the case where splits are made at points other than the
 median. Finally, because the errors in the previously published formulas
 resulted from a misunderstanding of partial correlations that we suspect still
 persists, we indicate when a partial correlation can and cannot be interpreted
 as a conditional correlation, or the correlation between two variables at a
 given level of the third variable. Specifically, we show that even conditional
 independence does not necessarily imply that the standard partial correlation

 265
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 formula will yield a zero value, and we suggest that other methods may be
 more appropriate means of addressing substantive questions of interest.

 Effects of Dichotomization on Correlations

 The question of what happens when both of two normally distributed
 variables are dichotomized has been considered by a number of authors from
 Pearson (1900) to the present. One frequently cited source, Peters and Van
 Voorhis (1940), discusses the problem of dichotomizing one or both of the
 variables, XI and X2, in a bivariate normal distribution. Peters and Van Voorhis
 assert that the original correlation p between the variables will be reduced
 to .798p if one of the variables is dichotomized and to .637p if both are
 dichotomized. In explaining Peters and Van Voorhis's equations, Cohen (1983)
 comments, "The constant .637 here is .7982, the result of applying the .798
 correction twice" (p. 251)-once for each dichotomization. Although it is
 plausible that each of the two dichotomizations would have the same effect,
 this is not quite correct. In fact, the correlation between the two dichotomized
 variables can be greater than the attenuated correlation resulting from dichoto-
 mizing only one of the two variables.

 A simple thought problem demonstrates that the .637 multiplier must be
 wrong: Consider the case where X1 and X2 correlate 1.0. The correlation for
 the dichotomized variables obviously remains at 1.0, in stark contrast to the
 .637 value that one would have arrived at by applying the .798 multiplier
 twice.

 To derive the correct answer for the joint dichotomization problem, we need
 to return to the development of the .798 multiplier for the dichotomization of
 one variable. Let us assume that X, and Y follow a bivariate normal distribu-
 tion. Without loss of generality, we may assume that both X1 and Y are
 standardized to have a mean of 0 and a variance of 1. Let Xld be the binary
 variable resulting from performing a median split on X1, and let Xld take on
 the values of -1 I and +1 I depending on whether X1 is negative or nonnegative,
 that is,

 1I for X,--:0
 Xld = -1 for X < 0 (1)

 Thus, Xld will also have a mean of 0 and a variance of 1. Hence, the correlation

 between a normal random variable and the dichotomized form resulting from
 a median split quickly reduces to the covariance:

 UXIXId _ TXIXId
 PXd- - 1 1 - XIXld = (X1 - x,)(XId - Xd). (2)

 ?'XI ?'XI-d

 But since the means of both variables are zero and since the product of X1
 and Xld is just IX1I, we have

 266
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 PXIXId = (X1 - XId) = T(IX,1). (3)

 Determining this expected absolute value by integrating IX I times the normal

 density function (4 yields the .798 multiplier:

 PXIXId = IX1,(X,) dxI = IX 1 e-x'2 dl

 /1 -XXe-X/2 dx2 + I Xie-X/2 dxl (4)

 1 1 2 2
 S + 1 = = .798.

 To complete the justification of the .798 multiplier, we now show that this
 correlation of a normal variable with its dichotomous form indicates the

 factor by which its correlation with other normally distributed variables is
 reduced. Assuming that X, and Y are bivariate normal with a correlation of

 PXl y, we may express their relationship via the following model:

 Y = pxvX, + E (5)

 where E is independent of X, and of Y, and is normally distributed with mean
 of 0 and variance of I - p2,y. Thus, we may express the correlation between
 the dichotomous Xld variable and the Y variable as follows:

 cov(XId, }') COv[XId, (PXiYXl + E)]
 PxdY = 1 1 (6)

 Expanding the covariance on the right above, we have

 CoV[XId, (PXiYXI + E)] = coV(Xld, PXIYXl) + coV(Xld, E) (7)

 - pxYCOV(Xld, XI) + COV(Xld, E).

 But since E is independent of XI, it will also be independent of any determinis-
 tic function of X1 such as Xld, and thus the covariance of XId and E will be
 0. And, from Equation 2 we know that the covariance of XId and X, is simply
 equal to their correlation. So we can write

 2
 PXIdY = PXIYCOV(XId, XI) = PxIY PXIXId = PXIY = .798pxly. (8)

 We can now turn our attention to the development of the central formula
 of interest, namely, the correlation resulting from doing a bivariate median
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 split on two bivariate normal variables. Cohen's (1983) incorrect formulation
 is based on Peters and Van Voorhis's (1940, p. 394) fallacious argument. In
 effect, Peters and Van Voorhis got into trouble by beginning with a wrong
 premise. They incorrectly assume that the (partial) correlation between two
 dichotomized variables (say, Xld and X2d) controlling for the continuous form
 of one of the variables (say, X1) will necessarily be zero. This in turn rests
 on their mistaken assertion that this partial correlation is the correlation
 between the dichotomous variables with the X, variable held constant in the
 sense of examining the XId, X2d correlation at fixed values of X1. Their
 reasoning is that the partial correlation must be zero because XId is a constant
 for any particular value of X1, and "any variable correlated with a constant
 gives a zero correlation" (Peters & Van Voorhis, 1940, p. 394).

 However, in reality, the partial correlation is not necessarily equal to the
 correlation at a fixed value of the variable being partialed, unless multivariate
 normality holds, which it obviously cannot in the case of binary variables.
 In fact, the partial correlation between the dichotomous variables will be
 nonzero any time the correlation between the two original variables is nonzero.

 We demonstrate this by making use of Kendall and Stuart's (1958, p. 350)
 results for the probability of obtaining particular combinations of observations
 when median splits are performed in a bivariate normal population. As before,
 we can express the correlation between two variables as the ratio of their
 covariance to the product of their standard deviations:

 Cov(XId, X2d) _(Xld " X2d) - (Xld) (X2d)
 XdX2d TXd ' (X2d (TXld X OX2d

 However, if we again let the dichotomous variables take on values of -1
 and + 1 for negative and nonnegative values of the corresponding standardized
 normal variables, the expected values of the single variables in the numerator
 above will both be 0, and the standard deviations in the denominator will
 both be 1. Thus, we can write

 PXIdX2d = (Xld - X2d). (10)

 We can determine this expected value by utilizing expressions for the
 probability of the four possible combinations of values of XId and X2d. Specifi-
 cally, Kendall and Stuart (1958, p. 351) show that the probability of X, and
 X2 both being above their mean (or equivalently, their median) is

 1 arcsin(pxx,)
 Pr(X > 0, X2> 0) + . (11) 4 2wr

 (It should be noted that the arcsine is expressed in radians here and equals
 0 when the correlation is 0, and equals 1.5708 = 7rr/2 when the correlation

 268
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 is 1.) But the symmetry of the bivariate normal implies that the probability
 of both variables being below the mean is the same as in (11):

 Pr(X1 < 0, X2 < 0) = Pr(X1 > 0, X2 > 0). (12)

 And, the probability of one variable being above its mean and the other
 variable below its mean will be just half the difference between I and the
 sum of the probability for the equal outcome cases:

 1 1 arcsin(px, x2) Pr(X1 > 0, X2 < 0) = Pr(X1 < 0, X2 > 0) = 2 1 - 2(4 + a 2

 1 arcsin(pxx2)
 (13)

 4 27

 Thus, when the expected value of Equation 10 is computed by multiplying

 Xld ? X2d by the probability of each of the four possible combinations of
 values, the constants cancel each other out and we are left with

 4 arcsin (PX X2)
 PXIdX2d = 2 = (2/ir) arcsin (PX,x2) = .637 arcsin (Px,x2). (14)

 Comparison of Incorrect and Correct Formulas

 How do the values one gets with this formula compare with those of the
 previously published incorrect equation? Because for any nonzero correlation,
 the arcsine of p is always greater than p in absolute value, the incorrect
 formula always provides an underestimate of the magnitude of the correlation.
 However, as shown in Table 1, if the continuous variables X, and X2 correlate

 TABLE 1

 The cost of dichotomizing: Reduction in correlations resulting from median splits
 of bivariate normal variables

 Original value of PXI X2

 Variable(s) dichotomized .1 .3 .5 .7 .9 .9075 .95 1.0

 Both: PVV formulaa .0637 .1910 .3138 .4456 .5730 .5777 .6048 .6366
 Both: Correct formulab .0638 .1940 .3333 .4936 .7129 .7240 .7978 1.0000
 Onec .0798 .2394 .3989 .5585 .7180 .7240 .7580 .7979

 "aValues computed using Peters & Van Voorhis's (1940) incorrect formula:

 PXI,X2d = (2/rr)pxlx2 = .637px,x,.
 bValues computed using the correct formula derived in the present article:

 PXIdX2d = (2/rr)arcsin(pXX2) = .637arcsin(px,x2).
 "cCorrelations resulting from dichotomizing only one of the two original variables:

 PXIX2 = PXXIXd = 2/rPXIX2 = .798PXIx2.
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 at .5 or less, the difference in expected correlations of their dichotomous
 forms Xld and X2d yielded by the incorrect and correct formulas is less than .02.

 On the other hand, as the original correlation increases above .5, the
 difference between the correct and incorrect formulas also increases, until at

 a Px1X2 value of 1.0 the correct value of the correlation between the two
 dichotomous forms is one and a half times the .637 others have suggested.

 Also shown in the table is the value of .798p, that is, the correlation
 resulting from splitting only one of the two bivariate normal variables at its
 mean. Although two splits can be better than one, this is usually not the case.
 For any original correlations below .9075-that is, below the solution of
 .637 arcsin(pxx2) = .798pXX2---dichotomizing both variables will result in
 a lower correlation than dichotomizing only one.

 Implications for Extensions of Maxwell and Delaney's Results

 Because the consequence of dichotomization (namely, false significance)
 discussed by Maxwell and Delaney (1993) is different from that usually noted
 (namely, reduced power), the question arises of whether dichotomizing just
 one of the two predictors would avoid or reverse the positive bias noted with
 the bivariate median split. Further, for each combination of continuous or
 dichotomous predictor variables, the dependent variable could also be dichoto-
 mized. Artificially dichotomous dependent variables occur with some regular-
 ity in education and psychology-for example, when a criterion is applied
 to an individual's average score in a course to decide whether he or she
 passes, or when a cutoff on a personality scale is used to classify an individual
 as pathological.

 In the three-variable situation that we are considering, each variable could
 be continuous or dichotomized, yielding eight possible combinations, as
 shown in Table 2, where XI and X2 denote the two predictors and Y denotes

 TABLE 2

 Eight possible analysis strategies for one continuous criterion and two continuous
 predictor variables

 Case Y X, X2

 ANOVA/regression cases
 1 C C C
 2 C D D
 3 C D C
 4 C C D

 Categorical cases
 5 D C C
 6 D D D
 7 D D C
 8 D C D

 Note. C = continuous. D = dichotomized.

 270
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 the dependent variable. Maxwell and Delaney (1993) considered only the
 first two cases; here we consider all eight. Readers of the Maxwell and
 Delaney article may have concluded that spurious statistical significance is
 a problem only if both predictor variables are dichotomized. We show below
 that dichotomization of one predictor can inflate the apparent effect even
 more than joint dichotomization. However, perhaps counterintuitively, the
 effects of dichotomization of each of the two predictor variables individually
 are not necessarily symmetrical.

 As in Maxwell and Delaney (1993), we will assume that the zero-order
 correlations between all pairs of variables are nonzero in the population, but
 that the correlation between Y and X2 controlling for X, is zero. Note that

 PX2YXI = 0 implies that PX2Y = PXIx2 PXly, a fact that will be helpful in
 assessing the effects of dichotomization on the measure of most interest here,
 namely, the apparent relationship between the second predictor and the crite-
 rion once the effects of the first predictor have been removed.

 The data analysis strategies suggested by Table 2 could involve several
 different statistical techniques. Considering first the cases with a continuous
 dependent variable, Cases I and 2 would correspond to a multiple regression
 analysis and a 2 x 2 analysis of variance, respectively. Cases 3 and 4 would
 normally be analyzed using analysis of covariance (ANCOVA). In Case 3,
 the test of X2 allowing for X, would correspond to the test of within-group
 regression where the dichotomous form of X, is the grouping variable and
 X2 is the covariate. In Case 4, the principal test of interest would usually be
 the adjusted group effect, that is, the test of the main effect of the dichotomous
 X2 factor controlling for the X, covariate.

 The situations with a categorical dependent variable might conventionally
 be analyzed using a discriminant analysis or log-linear routine. Categorical
 Case 5 would involve an attempt to discriminate between groups derived
 from the Y variable on the basis of two continuous predictors. For example,
 Y might be a measure of posttreatment amount of drinking in a study of
 alcoholism treatment programs. One might derive "problem drinker" and
 "non-problem drinker" groups from this variable and attempt to discriminate
 between the groups on the basis of amount of treatment received (XI) and
 knowledge of the physical consequences of drinking (X2). Dichotomizing
 both or only one of these latter variables yields Categorical Cases 6-8. In
 Categorical Case 6, all variables are dichotomous and one might perform a
 log-linear analysis of the resulting 2 X 2 X 2 contingency table. Cases 7
 and 8 could be analyzed via discriminant analysis or logistic regression using
 a combination of discrete and continuous predictors.

 Because of the variety of statistical methodologies that could be employed,
 comparison of the analyses across these cases is potentially difficult. However,
 as suggested by Rosenthal (1987, pp. 106-107), one can make comparisons
 readily by using a standardized measure of the size of effect. Here the
 correlation coefficient will suffice, with the partial correlation between X2

 271
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 and Y controlling for X, being of most interest, and where each of the three
 variables is alternately in its original form or in dichotomous form. Difficulties
 in the valid interpretation of this convenient but misunderstood statistic will
 be considered in the final section.

 The basic conceptual issue in dichotomization, even with the spuriously
 significant results with bivariate median splits, is the loss of information
 when one dichotomizes. As an aside, we note that in the univariate case
 it is possible to quantify precisely the loss of information resulting from
 dichotomizing. Measures of information were introduced to psychology from
 communication theory over 30 years ago by cognitive psychologists (e.g.,
 Garner, 1962) and are sometimes referred to as Shannon measures of average
 information or average uncertainty. Statisticians use essentially the same
 measures for characterizing distributions, though more commonly referring
 to the entropy (Pugachev, 1984, p. 113; Rao, 1973) or information content
 (Hastings & Peacock, 1975, p. 13) of the distribution. A distribution's informa-
 tion content, I, may be defined in bits as

 I = -f p(x) logp(x) dx. (15)

 Rao (1973, pp. 162-163) proves that the normal distribution has the maximum
 information content among all distributions with a given mean and variance,
 where the random variable varies from -oc to +co. In a standard normal

 distribution having unit variance, this may be expressed (see, e.g., Hastings &
 Peacock, 1975, p. 96) as

 I = log2 2_,e = log2 17.079 = log2 4.133 = 2.047. (16)

 In the case of a discrete distribution, the number of bits of information
 (Garner, 1962, p. 21) is

 I = -3 p(x)log2 p(x), (17)

 which in the case of a uniform random variable reduces simply to log2 N,
 where N is the number of possible values of the random variable. Thus, in
 the case of a dichotomized variable with a 50-50 split, we would have

 I = 1og2 2 = 1.000. (18)

 Thus, in terms of measured information, such a dichotomized variable has
 slightly less than half the information of the normally distributed variable
 from which it was formed.

 To return to our primary concern of the impact on apparent effect size in
 a three-variable situation, we move now to a consideration of the implications
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 of this loss of information for the partial correlation of X2 and Y controlling
 for X1, enumerating results for each of the eight situations listed in Table 2.
 The formulas for the three-variable situation where the original variables
 follow a multivariate normal distribution are shown in Table 3. Note that the

 numbers appearing in the formulas are simply powers of 2/-m expressed to

 three digits of accuracy-that is, .798 = (2/T)1/2, .637 = (2/rr)', .508 =
 (2/"Tr)/2, and .405 = (2/r)2. Also shown are the numerical values for the
 partial correlation corresponding to one of the examples of Maxwell and
 Delaney (1993) where x, v = .7, PXIX2 = .5, and pX2Y = .35. As shown in
 Table 3, this set of values results in the true partial correlation of X2 and Y
 controlling for X, being exactly 0.

 Perhaps at first glance the pattern of results seems counterintuitive in that
 dichotomizing only one of the two predictors (Cases 3 and 4) does not yield
 results intermediate between those of the original variables (Case 1) and the
 bivariate median split (Case 2). Instead, dichotomizing only X, yields the
 "worst" results in the sense that the partial correlation is furthest from the
 "correct" value of 0, and dichotomizing only X2 results in no apparent loss
 of information. This pattern is made understandable by realizing that because
 X, is the only conditionally predictive if not the true causal variable here, it
 is critical that one have full information on its values. Note that while X,
 may indeed be the cause of Y, it may also be that X, is simply an indicator
 of an unobserved latent variable or a correlate of some other variable that is

 the true cause. In Cases 1 and 4, all of the indirect effects of Xi through X2
 can be removed. In Case 2, the X, effects are not entirely removed from X2
 because some of the information about X,'s values has been lost, but the
 X2-Y correlation is suppressed somewhat because of the dichotomization of
 X2. Case 3 is the most extreme because the continuous form of X2 reflects
 the continuous information in X,, but the partialing of Xld removes only some
 of that information.

 The cases where Y is dichotomized are analogous to the four cases where
 Y is continuous. The same general pattern of zero and nonzero correlations
 holds, for the same reasons cited above, but the nonzero correlations are

 suppressed somewhat because of the dichotomization of Y The one exception
 is Case 8, where the continuous form of the causal variable is controlled.

 Because the two other variables are conditionally independent, this partial
 correlation will be close to zero for moderately sized original correlations.
 However, it will not be exactly zero because the reduction of the correlation
 between X2d and Yd resulting from their joint dichotomization is not exactly
 equal to applying the .798 multiplier twice, as is done in the XX2d and
 X, Yd correlations.

 Splits at Other Cutting Points

 It would be convenient if results could be presented for splits at points
 other than the median. One can specify the value of a normal variable's
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 correlation with its dichotomized form X, resulting from splitting at any
 arbitrary cutting point c, as follows:

 hC
 PxxC = P(- (19)

 x p,(1 - Pc)

 where hc is the ordinate of the standard normal density function at c and p,.
 is the proportion of cases below c. When c = 0-that is, when a median
 split is performed-pxx, takes on its maximum value of .798.

 By a logic similar to that discussed above for median splits (see Equations
 5-8), it can be shown that

 Pxcy = Pxx,.Pxy. (20)

 Unfortunately, no closed-form solution for the reduction of a correlation
 resulting from splitting both variables in a bivariate normal distribution at
 arbitrary cutting points is known. The tables published by Taylor and Russell
 (1939), however, provide rather precise numerical results for a wide range
 of values of px and p, with the tables giving the proportions of cases falling

 in the various quadrants of the resulting 2 x 2 table. These proportions could
 then be converted into a Pearson r by the usual formula:

 ad - bc
 r = , (21) RIR2C IC2

 where a, b, c, and d are the proportions in the cells, R, and R2 are the
 proportions in the rows, and C, and C2 are the proportions in the columns.

 The complementary problem of going from a 2 x 2 table of proportions
 to the estimated correlation in a bivariate normal distribution is the problem
 of a tetrachoric correlation, which is again solved by numerical approximation,
 usually involving iterative methods (e.g., Dixon, 1988, p. 547). However,
 Becker and Clogg (1988) recently supplied formulas for approximating the
 value of the tetrachoric which do not require iteration.

 In all of the above derivations the median has been assumed to be known

 exactly, whereas in real life we have to estimate it from the data. Naturally,
 the sample median will often be used as the best estimate of the population
 median, and the expected reduction in correlations when the true median is
 used is only approximated when an estimated median is used for the split.
 More precisely, we can say that whenever a certain function of parameters
 is equal to another parameter, then replacing the first set of parameters in
 the function by their maximum likelihood estimates will yield the maximum
 likelihood estimate of the last parameter. Even so, we can consider the
 question of whether the correlations with dichotomized variables will change
 substantially if the estimated median differs somewhat from the true median.
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 To assess this effect we calculated the value of the multiplier b = Pxxe
 present in Equations 19 and 20 for several cutpoint values and its relative
 difference from .798, the value valid in the case of a split using the true
 population median. Our calculations revealed that the change of the b multi-
 plier is quite negligible if the cutpoint (the estimated median) does not differ
 substantially from the true median value. For example, if the difference
 between the true median and the estimated median is less than one fourth of

 the population standard deviation (which happens with probability .99 if the
 sample size is larger than 106), the value of the correct multiplier will be
 only about 1% less than .798-that is, the correct multiplier will be .790 or
 greater. In other words, the multiplier of .798 will be within 1% of the
 (slightly smaller) exact correction factor that should have been used if it had
 been known that the split was being made at a point slightly different from
 the true median. Even if the difference between the estimated and true medians

 is as large as one half of the standard deviation (which it will be with
 probability less than .01 if the sample size is greater than 26), the relative
 change of the multiplier will not exceed 5%. Since the presented formulas
 for correlations with other variables all include the b multiplier (e.g., Equation
 16), those correlations will be proportional to it. Therefore, the robustness
 of b to departures from the true median will be transmitted to the other
 correlation values as well, provided we dichotomize only one of X, and X2
 (e.g., Cases 3, 4, and 5 in Table 3). It is more difficult to assess precisely
 the robustness of the reduced correlations based on estimated medians in

 other cases, particularly since we do not have closed-form solutions for the
 reduced correlations when both X, and X2 are split at arbitrary cutpoints.

 Interpretation of Partial Correlations

 From a practical standpoint, the error in the multiplier for correlations in
 bivariate median splits may not seem of great consequence-given the fact
 that correlations below .5 are more common in educational and behavioral

 sciences than those above .5. However, it is important to correct the misinter-
 pretation of partial correlations that contributed to and was carried forward
 by the previously published erroneous formula.

 Peters and Van Voorhis (1940) and others apparently believed that a partial
 correlation can always be interpreted as a correlation between two variables
 when a third variable is held constant, but that is not the case in general.
 Here we are drawing a distinction between the partial correlation between
 X2 and Y controlling for X1, which is the correlation between the residuals
 of the separate regressions of Y and X2 on X1, and the conditional correlation
 between X2 and Y for a given value of X1, which concerns only those values
 of X2 and Y sharing a particular value of X1. Although one can always compute
 such conditional correlations as long as there are multiple observations (not
 all tied) at a given value of X1, they are not necessarily related to the
 partial correlation.
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 By the Peters and Van Voorhis (1940) logic, the partial correlation of Xld
 and X2d controlling for X, would be 0, because the conditional correlation
 of Xld and X2d would be 0 at each value of XI. However, in reality the partial
 correlation in their situation could be substantial. For example, in a bivariate
 normal distribution with a .9 correlation between X1 and X2, the correlation
 between XId and X2d partialing out X, is .3335. Thus they were wrong at this
 point, and in fact in two ways. We can set aside the technical point that if
 the correlation is defined, as in Equation 9, as the ratio of the covariance of
 two variables to the product of their standard deviations, then the conditional
 correlation of a variable and a constant is not strictly zero but undefined
 because of the impossibility of dividing by zero. More importantly, we move
 now to the development of our final point: Even if all the conditional correla-
 tions between the dichotomous variables were 0, the partial correlation would
 not necessarily be 0.

 A key assumption that allows the partial correlation to be interpretable as
 the conditional correlation is multivariate normality, which implies that X,
 is univariately normally distributed and the distribution of Y and X2 is bivariate

 normal at each value of the conditioning variable X1. Such an assumption is
 termed a "primary assumption" by Darlington (1991, p. 110), that is, an
 assumption "whose violation jeopardizes the very meaning of the parameters
 under study," as opposed to a secondary assumption, violations of which
 "merely threaten the accuracy of our inferences about that parameter" (Dar-
 lington, 1991, p. 134). Obviously, if one of the two variables in the relationship
 is binary, their joint distribution cannot be bivariate normal. Thus, the partial
 correlation would not necessarily be zero even if all the conditional correla-
 tions were zero, because in the nonnormal case the partial correlation does
 not always indicate the values of the conditional correlations.

 An alternative perspective on the meaning (or lack thereof) of the partial
 correlation is provided by the concept of conditional independence. Users of
 normal-theory-based statistics are aware that, in general, a zero correlation
 does not imply independence unless the variables do have a bivariate normal
 distribution. On the other hand, the independence of two variables is known
 to imply that their correlation will be zero regardless of the shape of their
 joint distribution.

 We suspect that many users of partial correlations would believe that the

 same applies to partial correlations. That is, it seems very plausible if two
 variables are conditionally independent at each level of a third variable that
 their partial correlation controlling for the third variable will be 0. A simple
 counterexample proves that a nonzero partial correlation does not even imply
 conditional dependence.

 Consider the data shown in Table 4. Suppose that at each of three levels
 of the variable Z, the joint distributions of dichotomous variables X and Y
 are given by frequencies that are in proportion to the cell entries in the
 tables. At each of the three levels of Z, variables X and Y are conditionally
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 TABLE 4

 Example demonstrating that conditional independence does not imply zero
 partial correlation

 Y Y Y

 -1 1 -1 1 -1 1

 -1 3 9 3 1 4 4
 X

 1 1 3 9 3 4 4

 Z=0 Z=1 Z=2

 Summary XY table and statistics

 Y

 -1 1

 -1 10 14 rxz = -ryz = .204
 X rxy =-.167

 1 14 10 rxy.z = -.130

 independent-and their conditional correlations are zero. Overall, X and Y
 are negatively correlated at rxy = -.167. However, the partial correlation of
 X and Y controlling for Z, instead of being zero, is similar to the unconditional

 correlation, that is, rxy.z = -.130. In this case, there is some nonlinear
 relationship between X and Z, and between Y and Z. When Z is controlled,
 X and Y are residualized only for their linear relationship with Z, and thus
 the residuals still retain some information about Z. This example illustrates
 a situation where, although variables are not normally distributed, the partial
 correlation is well defined but different from the relationship suggested by
 the patterns of conditional correlations at the various levels of the variable
 being controlled. This state of affairs is like that in Case 8, considered in a
 previous section, where the fact that the original causal variable has been
 controlled assures that the two other variables will be conditionally indepen-
 dent, yet despite this their partial correlation is nonzero (see Table 3).
 How then are partial correlations to be interpreted? In the case of dichoto-

 mous variables, intuitions derived from the multivariate normal scenario do

 not necessarily apply. However, it is always true that they are correlations
 of residuals, where the residuals are computed by regressing the original
 variables on the control variable(s). For example, in the case of dichotomous
 variables, the residuals when one controls for the original continuous variable
 will in fact not be constant because the predictions and hence the residuals
 will depend on the values of the original variable.
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 Conclusion

 The basic message of this article is threefold. First, bivariate median splits
 do not always result in lower correlations than splitting only one variable,
 despite published claims to the contrary. Second, the types of spurious effects
 discussed by Maxwell and Delaney (1993) will tend to show up any time
 the causal, or conditionally predictive, variable is controlled by using a
 dichotomous rather than the original continuous form of the variable. Third,
 when conditional distributions are not bivariate normal, partial correlations
 must be interpreted with great caution. Perhaps most disconcerting, nonzero
 partial correlations do not in general mean that the two variables are condition-
 ally dependent.

 In terms of practical implications for researchers, if an investigator chooses
 to dichotomize, for whatever theoretical or practical reason, our results give
 guidance about likely effects. But in the usual case where dichotomization
 is undertaken merely in an effort to simplify the analysis of data, our basic
 advice, like that of other methodologists, is that dichotomization is a poor
 strategy. Not only can it lower power, it can also lead to false positives. In
 general, researchers should want to avoid using a method that may lead to
 incorrect conclusions about a variable's effect.

 We would nonetheless concede that it is possible that the decisions reached
 in all statistical tests of interest in a given situation may be the same whether
 the predictors are in dichotomous or continuous form. In the multivariate
 normal situation, this would occur if relationships between variables were
 relatively weak, and thus the attenuation or inflation resulting from dichotomi-

 zation is relatively inconsequential. The two kinds of data analysis could also
 yield similar results when data are not multivariate normal. This is likely to
 be the case in designs using extreme groups, that is, where subjects are
 selected because of being either very high or very low on one of the X
 variables. Alternatively, the relationship between X and Y may in fact be a
 step function-for example, if all subjects above a critical value on X obtain
 one score on Y and all those below the critical value obtain a different score

 on Y In any of these cases, if the results of the two sorts of analyses lead
 to the same conclusions, researchers may want to note that fact in reports of
 their work but structure their discussion around analyses of the dichotomous
 form of the variables. Note, however, that in this situation it is the simplicity
 of the presentation or the facilitation of communication of results, rather than

 the simplicity of data analysis, that is the guiding principle.
 Finally, because investigators want to make inferences concerning the

 relationship between two variables at given levels of the third, we reiterate
 that if data are not bivariate normal, then partial correlations will not provide
 the answer to the question of interest. If conditional correlations or conditional

 independence are of interest, then those issues should be examined directly.
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